.

.*7

gF
34 o
Cryptography

Network
Security

William Stallings

ONLINE ACCESS for Cryptography and Network Security: Principles
and Practice, Sixth Edition

Thank you for purchasing a new copy of Cryptography and Network Security:
Principles and Practice, Sixth Edition. Your textbook includes six months of prepaid
access to the book’s Premium Web site. This prepaid subscription provides you with full
access to the following student support areas:

* VideoNotes are step-by-step video tutorials specifically designed to enhance the
programming concepts presented in this textbook

¢ Online Chapters

¢ Online Appendices

e Supplemental homework problems with solutions

¢ Supplemental papers for reading

Note that this prepaid subscription does not include access to MyProgrammingLab, which is
available at http://www.myprogramminglab.com for purchase.

Use a coin to scratch off the coating and reveal your student access code.
Do not use a knife or other sharp object as it may damage the code.

To access the Cryptography and Network Security: Principles and Practice, Sixth Edition,
Premium Web site for the first time, you will need to register online using a computer with
an Internet connection and a web browser. The process takes just a couple of minutes and
only needs to be completed once.

1. Go to http://www.pearsonhighered.com/stallings/
2. Click on Premium Web site.

3. Click on the Register button.
4

. On the registration page, enter your student access code* found beneath the
scratch-off panel. Do not type the dashes. You can use lower- or uppercase.

5. Follow the on-screen instructions. If you need help at any time during the online
registration process, simply click the Need Help? icon.

6. Once your personal Login Name and Password are confirmed, you can begin using
the Cryptography and Network Security: Principles and Practice, Sixth Edition
Premium Web site!

To log in after you have registered:

You only need to register for this Premium Web site once. After that, you can log in any
time at http://www.pearsonhighered.com/stallings/ by providing your Login Name and
Password when prompted.

*Important: The access code can only be used once. This subscription is valid for six months
upon activation and is not transferable. If this access code has already been revealed, it
may¥no longer be valid. If this is the case, you can purchase a subscription by going to
http://www.pearsonhighered.com/stallings/ and following the on-screen instructions.

http://www.myprogramminglab.com
http://www.pearsonhighered.com/stallings/
http://www.pearsonhighered.com/stallings/
http://www.pearsonhighered.com/stallings/

This page intentionally left blank

CRYPTOGRAPHY AND
NETWORK SECURITY
PRINCIPLES AND PRACTICE
SIXTH EDITION

William Stallings

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto

Delhi Mexico City Sio Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

For Tricia never dull never boring
the smartest and bravest
person I know

Editorial Director, ECS: Marcia Horton Permissions Supervisor: Michael Joyce
Executive Editor: Tracy Johnson Permissions Administrator: Jenell Forschler
Associate Editor: Carole Snyder Director, Image Asset Services: Annie Atherton
Director of Marketing: Christy Lesko Manager, Visual Research: Karen Sanatar
Marketing Manager: Yez Alayan Cover Photo: © Valery Sibrikov/Fotolia
Director of Production: Erin Gregg Media Project Manager: Renata Butera
Managing Editor: Scott Disanno Full-Service Project Management: Shiny Rajesh/
Associate Managing Editor: Robert Engelhardt Integra Software Services Pvt. Ltd.
Production Manager: Pat Brown Composition: Integra Software Services Pvt. Ltd.
Art Director: Jayne Conte Printer/Binder: Courier Westford

Cover Designer: Bruce Kenselaar Cover Printer: Lehigh-Phoenix

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appear in the Credits section in the end matter of this text.

Copyright © 2014, 2011, 2006 Pearson Education, Inc., All rights reserved. Printed in the United States of America.
This publication is protected by Copyright, and permission should be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please
submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle
River, New Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where
those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data on file.

10987654321

P E A RS O N ISBN 10: 0-13-335469-5
ISBN 13:978-0-13-335469-0

CONTENTS

Notation xi
Preface xiii

Chapter 0 Guide for Readers and Instructors 1

0.1 Outline of This Book 2

0.2 A Roadmap for Readers and Instructors 3
0.3 Internet and Web Resources 4

0.4 Standards 5

Chapter 1 Overview 7

1.1 Computer Security Concepts 9

1.2 The OSI Security Architecture 14

1.3 Security Attacks 15

1.4 Security Services 17

1.5 Security Mechanisms 20

1.6 A Model for Network Security 22

1.7 Recommended Reading 24

1.8 Key Terms, Review Questions, and Problems 25

PART ONE SYMMETRIC CIPHERS 27
Chapter 2 Classical Encryption Techniques 27

2.1 Symmetric Cipher Model 28

2.2 Substitution Techniques 34

2.3 Transposition Techniques 49

2.4 Rotor Machines 50

2.5 Steganography 52

2.6 Recommended Reading 54

2.7 Key Terms, Review Questions, and Problems 55

Chapter 3 Block Ciphers and the Data Encryption Standard 61

3.1 Traditional Block Cipher Structure 63

3.2 The Data Encryption Standard 72

3.3 A DES Example 74

3.4 The Strength of DES 77

3.5 Block Cipher Design Principles 78

3.6 Recommended Reading 80

3.7 Key Terms, Review Questions, and Problems 81

Chapter 4 Basic Concepts in Number Theory and Finite Fields 85

4.1 Divisibility and the Division Algorithm 87
4.2 The Euclidean Algorithm 88

iv

4.3
4.4
4.5
4.6
4.7
4.8
4.9

Chapter 5

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Chapter 6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Chapter 7

71
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Modular Arithmetic 91

Groups, Rings, and Fields 99

Finite Fields of the Form GF(p) 102

Polynomial Arithmetic 106

Finite Fields of the Form GF(2") 112
Recommended Reading 124

Key Terms, Review Questions, and Problems 124
Appendix 4A The Meaning of mod 127

Advanced Encryption Standard 129

Finite Field Arithmetic 130

AES Structure 132

AES Transformation Functions 137

AES Key Expansion 148

An AES Example 151

AES Implementation 155

Recommended Reading 159

Key Terms, Review Questions, and Problems 160
Appendix 5A Polynomials with Coefficients in GF(2%) 162
Appendix 5B Simplified AES 164

Block Cipher Operation 174

Multiple Encryption and Triple DES 175

Electronic Code book 180

Cipher Block Chaining Mode 183

Cipher Feedback Mode 185

Output Feedback Mode 187

Counter Mode 189

XTS-AES Mode for Block-Oriented Storage Devices 191
Recommended Reading 198

Key Terms, Review Questions, and Problems 198

Pseudorandom Number Generation and Stream Ciphers 202

Principles of Pseudorandom Number Generation 203
Pseudorandom Number Generators 210

Pseudorandom Number Generation Using a Block Cipher 213
Stream Ciphers 219

RC4 221

True Random Number Generators 223

Recommended Reading 227

Key Terms, Review Questions, and Problems 228

PART TWO ASYMMETRIC CIPHERS 231

Chapter 8

8.1
8.2
8.3
8.4

More Number Theory 231

Prime Numbers 232

Fermat’s and Euler’s Theorems 236
Testing for Primality 239

The Chinese Remainder Theorem 242

8.5
8.6
8.7

Chapter 9

9.1
9.2
9.3
9.4

Chapter 10

10.1
10.2
10.3
10.4
10.5
10.6
10.7

Discrete Logarithms 244
Recommended Reading 249
Key Terms, Review Questions, and Problems 250

Public-Key Cryptography and RSA 253

Principles of Public-Key Cryptosystems 256

The RSA Algorithm 264

Recommended Reading 278

Key Terms, Review Questions, and Problems 279
Appendix 9A The Complexity of Algorithms 283
Other Public-Key Cryptosystems 286
Diffie-Hellman Key Exchange 287

Elgamal Cryptographic System 292

Elliptic Curve Arithmetic 295

Elliptic Curve Cryptography 303

Pseudorandom Number Generation Based on an Asymmetric Cipher 306
Recommended Reading 309

Key Terms, Review Questions, and Problems 309

PART THREE CRYPTOGRAPHIC DATA INTEGRITY ALGORITHMS 313

Chapter 11

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8

Chapter 12

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11

Chapter 13

13.1
13.2
13.3

Cryptographic Hash Functions 313

Applications of Cryptographic Hash Functions 315
Two Simple Hash Functions 320

Requirements and Security 322

Hash Functions Based on Cipher Block Chaining 328
Secure Hash Algorithm (SHA) 329

SHA-3 339

Recommended Reading 351

Key Terms, Review Questions, and Problems 351

Message Authentication Codes 355

Message Authentication Requirements 357

Message Authentication Functions 357

Requirements for Message Authentication Codes 365
Security of MACs 367

MAC:s Based on Hash Functions: HMAC 368

MAC:s Based on Block Ciphers: DAA and CMAC 373
Authenticated Encryption: CCM and GCM 376

Key Wrapping 382

Pseudorandom Number Generation using Hash Functions and MACs 387
Recommended Reading 390

Key Terms, Review Questions, and Problems 390

Digital Signatures 393

Digital Signatures 395
Elgamal Digital Signature Scheme 398
Schnorr Digital Signature Scheme 400

vi

13.4
13.5
13.6
13.7
13.8

NIST Digital Signature Algorithm 401

Elliptic Curve Digital Signature Algorithm 404
RSA-PSS Digital Signature Algorithm 407
Recommended Reading 412

Key Terms, Review Questions, and Problems 412

PART FOUR MUTUAL TRUST 417

Chapter 14

14.1
14.2
14.3
14.4
14.5
14.6
14.7

Chapter 15

15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8

Key Management and Distribution 417

Symmetric Key Distribution Using Symmetric Encryption 418
Symmetric Key Distribution Using Asymmetric Encryption 427
Distribution of Public Keys 430

X.509 Certificates 435

Public-Key Infrastructure 443

Recommended Reading 445

Key Terms, Review Questions, and Problems 446

User Authentication 450

Remote User-Authentication Principles 451

Remote User-Authentication Using Symmetric Encryption 454
Kerberos 458

Remote User Authentication Using Asymmetric Encryption 476
Federated Identity Management 478

Personal Identity Verification 484

Recommended Reading 491

Key Terms, Review Questions, and Problems 491

PART FIVE NETWORK AND INTERNET SECURITY 495

Chapter 16

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8
16.9

Chapter 17

171
17.2
17.3
17.4
17.5
17.6
17.7

Network Access Control and Cloud Security 495

Network Access Control 496

Extensible Authentication Protocol 499

IEEE 802.1X Port-Based Network Access Control 503
Cloud Computing 505

Cloud Security Risks and Countermeasures 512

Data Protection in the Cloud 514

Cloud Security as a Service 517

Recommended Reading 520

Key Terms, Review Questions, and Problems 521

Transport-Level Security 522

Web Security Considerations 523

Secure Sockets Layer 525

Transport Layer Security 539

HTTPS 543

Secure Shell (SSH) 544

Recommended Reading 555

Key Terms, Review Questions, and Problems 556

Chapter 18

18.1
18.2
18.3
18.4
18.5
18.6

Chapter 19

19.1
19.2
19.3
19.4
19.5

Chapter 20

20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8

vii
Wireless Network Security 558

Wireless Security 559

Mobile Device Security 562

IEEE 802.11 Wireless LAN Overview 566

IEEE 802.11i Wireless LAN Security 572
Recommended Reading 586

Key Terms, Review Questions, and Problems 587

Electronic Mail Security 590

Pretty Good Privacy 591

S/MIME 599

DomainKeys Identified Mail 615

Recommended Reading 622

Key Terms, Review Questions, and Problems 622
Appendix 19A Radix-64 Conversion 623

IP Security 626

IP Security Overview 628

IP Security Policy 632

Encapsulating Security Payload 638

Combining Security Associations 645

Internet Key Exchange 649

Cryptographic Suites 657

Recommended Reading 659

Key Terms, Review Questions, and Problems 659

APPENDICES 661

Appendix A

A1l
A.2
A3
A4
A5
A.6
A7
A.8
A9
A.10
A.11
A.12

Appendix B

B.1
B.2
B.3
B.4
B.5

Projects for Teaching Cryptography and Network Security 661

Sage Computer Algebra Projects 662
Hacking Project 663

Block Cipher Projects 664
Laboratory Exercises 664
Research Projects 664
Programming Projects 665
Practical Security Assessments 665
Firewall Projects 666

Case Studies 666

Writing Assignments 666
Reading/Report Assignments 667
Discussion Topics 667

Sage Examples 668

Linear Algebra and Matrix Functionality 669

Chapter 2: Classical Encryption 670

Chapter 3: Block Ciphers and the Data Encryption Standard 673
Chapter 4: Basic Concepts in Number Theory and Finite Fields 677
Chapter 5: Advanced Encryption Standard 684

viii

B.6 Chapter 6: Pseudorandom Number Generation and Stream Ciphers 689
B.7 Chapter 8: Number Theory 691

B.8 Chapter 9: Public-Key Cryptography and RSA 696

B.9 Chapter 10: Other Public-Key Cryptosystems 699

B.10 Chapter 11: Cryptographic Hash Functions 704

B.11 Chapter 13: Digital Signatures 706

References 710
Credits 720
Index 723

ONLINE CHAPTERS AND APPENDICES!

PART SIX SYSTEM SECURITY
Chapter 21 Malicious Software

21.1 Types of Malicious Software

21.2 Propagation — Infected Content - Viruses

21.3 Propagation — Vulnerability Exploit - Worms

21.4 Propagation — Social Engineering — SPAM, Trojans
21.5 Payload — System Corruption

21.6 Payload — Attack Agent — Zombie, Bots

21.7 Payload — Information Theft — Keyloggers, Phishing, Spyware
21.8 Payload — Stealthing — Backdoors, Rootkits

21.9 Countermeasures

21.10 Distributed Denial of Service Attacks

21.11 Recommended Reading

21.12 Key Terms, Review Questions, and Problems

Chapter 22 Intruders

22.1 Intruders

22.2 Intrusion Detection

22.3 Password Management

22.4 Recommended Reading

22.5 Key Terms, Review Questions, and Problems

Appendix 22A The Base-Rate Fallacy

Chapter 23 Firewalls

23.1 The Need for Firewalls

23.2 Firewall Characteristics

23.3 Types of Firewalls

23.4 Firewall Basing

23.5 Firewall Location and Configurations

23.6 Recommended Reading

23.7 Key Terms, Review Questions, and Problems

Online chapters, appendices, and other documents are Premium Content, available via the access card
at the front of this book.

PART SEVEN LEGAL AND ETHICAL ISSUES
Chapter 24 Legal and Ethical Issues

241 Cybercrime and Computer Crime
24.2 Intellectual Property

24.3 Privacy

24.4 Ethical Issues

24.5 Recommended Reading

24.6 Key Terms, Review Questions, and Problems
Appendix C Sage Exercises
Appendix D Standards and Standards-Setting Organizations
Appendix E Basic Concepts from Linear Algebra
Appendix F Measures of Security and Secrecy
Appendix G Simplified DES
Appendix H Evaluation Criteria for AES
Appendix I More on Simplified AES
Appendix J Knapsack Public-Key Algorithm
Appendix K Proof of the Digital Signature Algorithm
Appendix L TCP/IP and OSI
Appendix M Java Cryptographic APIs
Appendix N MD5 and Whirlpool Hash Functions
Appendix O Data Compression Using ZIP
Appendix P More on PGP
Appendix Q The International Reference Alphabet
Appendix R Proof of the RSA Algorithm
Appendix S Data Encryption Standard (DES)
Appendix T Kerberos Encryption Techniques
Appendix U Mathematical Basis of the Birthday Attack
Appendix V Evaluation Criteria for SHA-3

Glossary

ix

This page intentionally left blank

NOTATION

Even the natives have difficulty mastering this peculiar vocabulary.

—The Golden Bough, Sir James George Frazer

Symbol Expression Meaning
D, K D(K, Y) Symmetric decryption of ciphertext Y using secret key K
D, PR, D(PR,, Y) Asymmetric decryption of ciphertext Y using A’s private key PR,
D, PU, D(PU,,Y) Asymmetric decryption of ciphertext Y using A’s public key PU,
E, K E(K, X) Symmetric encryption of plaintext X using secret key K
E, PR, E(PR,, X) Asymmetric encryption of plaintext X using A’s private key PR,
E, PU, E(PU,, X) Asymmetric encryption of plaintext X using A’s public key PU,
K Secret key
PR, Private key of user A
PU, Public key of user A
MAC, K MAC(K, X) Message authentication code of message X using secret key K
GF(p) The finite field of order p, where p is prime.The field is defined as
the set Z,, together with the arithmetic operations modulo p.

GF(2") The finite field of order 2"
Z, Set of nonnegative integers less than n

. Greatest common divisor; the largest positive integer that divides
e ged(@, j) both i and j with no remainder on division.
mod amod m Remainder after division of a by m
mod, = a = b(mod m) a mod m = b mod m
mod, # a # b(mod m) a modm # b modm
dlog dlog,, ,(b) Discrete logarithm of the number b for the base a (mod p)

The number of positive integers less than » and relatively prime to n.

& () This is Euler’s totient function.
S, ﬁ;ai aq +ta+---+a,
II ,-ljlai a X ap X - Xa,

Xii NOTATION

Symbol Expression Meaning

| ilj i divides j, which means that there is no remainder when j is divided
by i

[, | la| Absolute value of a

[x|y x concatenated with y

~ x =y X is approximately equal to y

®)y E?{Cll.lSiVe-OR.Of x and y for single-bit Va.riable.s; .
Bitwise exclusive-OR of x and y for multiple-bit variables

] |x] The largest integer less than or equal to x

€ x €S The element x is contained in the set S.

«—>

The integer A corresponds to the sequence of integers (ay, ay, . . . ay)

PREFACE

“There is the book, Inspector. I leave it with you, and you cannot doubt that it
contains a full explanation.”

— The Adventure of the Lion’s Mane, Sir Arthur Conan Doyle

In the four years since the fifth edition of this book was published, the field has seen contin-
ued innovations and improvements. In this new edition, I try to capture these changes while
maintaining a broad and comprehensive coverage of the entire field. To begin this process
of revision, the fifth edition of this book was extensively reviewed by a number of professors
who teach the subject and by professionals working in the field. The result is that, in many
places, the narrative has been clarified and tightened, and illustrations have been improved.

Beyond these refinements to improve pedagogy and user-friendliness, there have been
substantive changes throughout the book. Roughly the same chapter organization has been
retained, but much of the material has been revised and new material has been added. The
most noteworthy changes are as follows:

Network access control: A new chapter provides coverage of network access control,
including a general overview plus discussions of the Extensible Authentication Proto-
col and IEEE 802.1X.

Cloud security: A new section covers the security issues relating to the exciting new
area of cloud computing.

SHA-3: A new section covers the new cryptographic hash standard, SHA-3, which was
adopted in 2012.

Key wrapping: The use of key wrapping to protect symmetric keys has been adopted in
a number of applications. A new section covers this topic.

Elliptic Curve Digital Signature Algorithm (ECDSA): Because ECDSA is more effi-
cient than other digital signature schemes, it is increasingly being adopted for digital
signature applications. A new section covers ECDSA.

RSA Probabilistic Signature Scheme (RSA-PSS): RSA-based digital signature
schemes are perhaps the most widely used. A new section covers the recently standard-
ized RSA-PSS, which is in the process of replacing older RSA-based schemes.

True random number generator: True random number generators have traditionally
had a limited role because of their low bit rate, but a new generation of hardware true
random number generators is now available that is comparable in performance to soft-
ware pseudorandom number generators. A new section covers this topic and discusses
the Intel Digital Random Number Generator (DRNG).

Personal identity verification (PIV): The NIST has issued a comprehensive set of
standards for smartcard-based user authentication that is being widely adopted. A new
section covers PIV.

xiii

Xiv PREFACE

* Mobile device security: Mobile device security has become an essential aspect of enter-
prise network security. A new section covers this important topic.

* Malicious software: This chapter provides a different focus than the chapter on mali-
cious software in the previous edition. Increasingly we see backdoor/rootkit type mal-
ware installed by social engineering attacks, rather than more classic virus/worm direct
infection. And phishing is even more prominent than ever. These trends are reflected in
the coverage.

e Sample syllabus: The text contains more material than can be conveniently covered
in one semester. Accordingly, instructors are provided with several sample syllabi that
guide the use of the text within limited time (e.g., 16 weeks or 12 weeks). These samples
are based on real-world experience by professors with the fifth edition.

* VideoNotes on Sage examples: The new edition is accompanied by a number of
VideoNotes lectures that amplify and clarify the cryptographic examples presented
in Appendix B, which introduces Sage.

* Learning objectives: Each chapter now begins with a list of learning objectives.

OBJECTIVES

It is the purpose of this book to provide a practical survey of both the principles and practice
of cryptography and network security. In the first part of the book, the basic issues to be
addressed by a network security capability are explored by providing a tutorial and survey
of cryptography and network security technology. The latter part of the book deals with the
practice of network security: practical applications that have been implemented and are in
use to provide network security.

The subject, and therefore this book, draws on a variety of disciplines. In particular, it
is impossible to appreciate the significance of some of the techniques discussed in this book
without a basic understanding of number theory and some results from probability theory.
Nevertheless, an attempt has been made to make the book self-contained. The book not
only presents the basic mathematical results that are needed but provides the reader with an
intuitive understanding of those results. Such background material is introduced as needed.
This approach helps to motivate the material that is introduced, and the author considers
this preferable to simply presenting all of the mathematical material in a lump at the begin-
ning of the book.

SUPPORT OF ACM/IEEE COMPUTER SCIENCE CURRICULA 2013

The book is intended for both academic and professional audiences. As a textbook, it is
intended as a one-semester undergraduate course in cryptography and network security for
computer science, computer engineering, and electrical engineering majors. The changes
to this edition are intended to provide support of the current draft version of the ACM/
IEEE Computer Science Curricula 2013 (CS2013). CS2013 adds Information Assurance and
Security (IAS) to the curriculum recommendation as one of the Knowledge Areas in the
Computer Science Body of Knowledge. The document states that IAS is now part of the
curriculum recommendation because of the critical role of IAS in computer science educa-
tion. CS2013 divides all course work into three categories: Core-Tier 1 (all topics should be
included in the curriculum), Core-Tier-2 (all or almost all topics should be included), and

PREFACE XV

elective (desirable to provide breadth and depth). In the IAS area, CS2013 recommends
topics in Fundamental Concepts and Network Security in Tier 1 and Tier 2, and Cryptog-
raphy topics as elective. This text covers virtually all of the topics listed by CS2013 in these
three categories.

The book also serves as a basic reference volume and is suitable for self-study.

PLAN OF THE TEXT

The book is divided into seven parts, which are described in Chapter 0.

e Symmetric Ciphers

e Asymmetric Ciphers

¢ Cryptographic Data Integrity Algorithms

* Mutual Trust

* Network and Internet Security

e System Security

e Legal and Ethical Issues

The book includes a number of pedagogic features, including the use of the

computer algebra system Sage and numerous figures and tables to clarify the discussions.
Each chapter includes a list of key words, review questions, homework problems, and
suggestions for further reading. The book also includes an extensive glossary, a list of

frequently used acronyms, and a bibliography. In addition, a test bank is available to
instructors.

INSTRUCTOR SUPPORT MATERIALS

The major goal of this text is to make it as effective a teaching tool for this exciting and fast-
moving subject as possible. This goal is reflected both in the structure of the book and in the
supporting material. The text is accompanied by the following supplementary material that
will aid the instructor:

* Solutions manual: Solutions to all end-of-chapter Review Questions and Problems.

* Projects manual: Suggested project assignments for all of the project categories listed
below.

* PowerPoint slides: A set of slides covering all chapters, suitable for use in lecturing.

e PDF files: Reproductions of all figures and tables from the book.

* Test bank: A chapter-by-chapter set of questions with a separate file of answers.

* Sample syllabuses: The text contains more material than can be conveniently covered
in one semester. Accordingly, instructors are provided with several sample syllabuses

that guide the use of the text within limited time. These samples are based on real-world
experience by professors with the fifth edition.

All of these support materials are available at the Instructor Resource Center (IRC) for
this textbook, which can be reached through the publisher’s Web site www.pearsonhighered
.com/stallings or by clicking on the link labeled Pearson Resources for Instructors at this book’s

www.pearsonhighered.com/stallings
www.pearsonhighered.com/stallings

xvi

Companion Web site at WilliamStallings.com/Cryptography. To gain access to the IRC, please
contact your local Pearson sales representative via pearsonhighered.com/educator/replocator/
requestSalesRep.page or call Pearson Faculty Services at 1-800-526-0485.

The Companion Web site, at WilliamStallings.com/Cryptography (click on Instructor
Resources link), includes the following:

Links to Web sites for other courses being taught using this book

Sign-up information for an Internet mailing list for instructors using this book to
exchange information, suggestions, and questions with each other and with the author

For many instructors, an important component of a cryptography or network security course
is a project or set of projects by which the student gets hands-on experience to reinforce
concepts from the text. This book provides an unparalleled degree of support, including
a projects component in the course. The IRC not only includes guidance on how to assign
and structure the projects, but also includes a set of project assignments that covers a broad
range of topics from the text:

Sage projects: Described in the next section.

Hacking project: Exercise designed to illuminate the key issues in intrusion detection
and prevention.

Block cipher projects: A lab that explores the operation of the AES encryption algo-
rithm by tracing its execution, computing one round by hand, and then exploring the
various block cipher modes of use. The lab also covers DES. In both cases, an online
Java applet is used (or can be downloaded) to execute AES or DES.

Lab exercises: A series of projects that involve programming and experimenting with
concepts from the book.

Research projects: A series of research assignments that instruct the student to research
a particular topic on the Internet and write a report.

Programming projects: A series of programming projects that cover a broad range of
topics and that can be implemented in any suitable language on any platform.
Practical security assessments: A set of exercises to examine current infrastructure and
practices of an existing organization.

Firewall projects: A portable network firewall visualization simulator, together with
exercises for teaching the fundamentals of firewalls.

Case studies: A set of real-world case studies, including learning objectives, case
description, and a series of case discussion questions.

Writing assignments: A set of suggested writing assignments, organized by chapter.

Reading/report assignments: A list of papers in the literature —one for each chapter—
that can be assigned for the student to read and then write a short report.

This diverse set of projects and other student exercises enables the instructor to use the
book as one component in a rich and varied learning experience and to tailor a course plan to
meet the specific needs of the instructor and students. See Appendix A in this book for details.

PREFACE XVil

THE SAGE COMPUTER ALGEBRA SYSTEM

One of the most important features of this book is the use of Sage for cryptographic exam-
ples and homework assignments. Sage is an open-source, multiplatform, freeware package that
implements a very powerful, flexible, and easily learned mathematics and computer algebra
system. Unlike competing systems (such as Mathematica, Maple, and MATLAB), there are
no licensing agreements or fees involved. Thus, Sage can be made available on computers and
networks at school, and students can individually download the software to their own personal
computers for use at home. Another advantage of using Sage is that students learn a powerful,
flexible tool that can be used for virtually any mathematical application, not just cryptography.

The use of Sage can make a significant difference to the teaching of the mathematics of
cryptographic algorithms. This book provides a large number of examples of the use of Sage
covering many cryptographic concepts in Appendix B, which is included in this book.

Appendix C lists exercises in each of these topic areas to enable the student to gain
hands-on experience with cryptographic algorithms. This appendix is available to instruc-
tors at the IRC for this book. Appendix C includes a section on how to download and get
started with Sage, a section on programming with Sage, and exercises that can be assigned to
students in the following categories:

* Chapter 2— Classical Encryption: Affine ciphers and the Hill cipher.

* Chapter 3—Block Ciphers and the Data Encryption Standard: Exercises based on
SDES.

* Chapter 4—Basic Concepts in Number Theory and Finite Fields: Euclidean and
extended Euclidean algorithms, polynomial arithmetic, and GF(24).

* Chapter 5— Advanced Encryption Standard: Exercises based on SAES.

¢ Chapter 6—Pseudorandom Number Generation and Stream Ciphers: Blum Blum
Shub, linear congruential generator, and ANSI X9.17 PRNG.

* Chapter 8—Number Theory: Euler’s Totient function, Miller Rabin, factoring, modu-
lar exponentiation, discrete logarithm, and Chinese remainder theorem.

* Chapter 9—Public-Key Cryptography and RSA: RSA encrypt/decrypt and signing.

* Chapter 10— Other Public-Key Cryptosystems: Diffie-Hellman, elliptic curve.

¢ Chapter 11— Cryptographic Hash Functions: Number-theoretic hash function.

* Chapter 13— Digital Signatures: DSA.

ONLINE DOCUMENTS FOR STUDENTS

For this new edition, a tremendous amount of original supporting material for students
has been made available online, at two Web locations. The Companion Web site, at
WilliamStallings.com/Cryptography (click on Student Resources link), includes a list of rel-
evant links organized by chapter and an errata sheet for the book.

Purchasing this textbook new also grants the reader six months of access to the Premium
Content site, which includes the following materials:

* Online chapters: To limit the size and cost of the book, four chapters of the book
are provided in PDF format. This includes three chapters on computer security

xviii

and one on legal and ethical issues. The chapters are listed in this book’s table
of contents.

Online appendices: There are numerous interesting topics that support material found
in the text but whose inclusion is not warranted in the printed text. A total of 20 online
appendices cover these topics for the interested student. The appendices are listed in
this book’s table of contents.

Homework problems and solutions: To aid the student in understanding the material, a
separate set of homework problems with solutions are available.

Key papers: A number of papers from the professional literature, many hard to find,
are provided for further reading.

Supporting documents: A variety of other useful documents are referenced in the text
and provided online.

Sage code: The Sage code from the examples in Appendix B is useful in case the student
wants to play around with the examples.

To access the Premium Content site, click on the Premium Content link at the Com-
panion Web site or at pearsonhighered.com/stallings and enter the student access code
found on the card in the front of the book.

This new edition has benefited from review by a number of people who gave generously of
their time and expertise. The following people reviewed all or a large part of the manuscript:
Steven Tate (University of North Carolina at Greensboro), Kemal Akkaya (Southern Illinois
University), Bulent Yener (Rensselaer Polytechnic Institute), Ellen Gethner (University of
Colorado, Denver), Stefan A. Robila (Montclair State University), and Albert Levi (Sabanci
University, Istanbul, Turkey).

Thanks also to the people who provided detailed technical reviews of one or more
chapters: Kashif Aftab, Jon Baumgardner, Alan Cantrell, Rajiv Dasmohapatra, Edip
Demirbilek, Dhananjoy Dey, Dan Dieterle, Gerardo Iglesias Galvan, Michel Garcia, David
Gueguen, Anasuya Threse Innocent, Dennis Kavanagh, Duncan Keir, Robert Knox, Bob
Kupperstein, Bo Lin, Kousik Nandy, Nickolay Olshevsky, Massimiliano Sembiante, Oscar
So, and Varun Tewari.

In addition, I was fortunate to have reviews of individual topics by “subject-area
gurus,” including Jesse Walker of Intel (Intel’s Digital Random Number Generator), Russ
Housley of Vigil Security (key wrapping), Joan Daemen (AES), Edward F. Schaefer of
Santa Clara University (Simplified AES), Tim Mathews, formerly of RSA Laboratories
(S'MIME), Alfred Menezes of the University of Waterloo (elliptic curve cryptography),
William Sutton, Editor/Publisher of The Cryptogram (classical encryption), Avi Rubin of
Johns Hopkins University (number theory), Michael Markowitz of Information Security
Corporation (SHA and DSS), Don Davis of IBM Internet Security Systems (Kerberos),
Steve Kent of BBN Technologies (X.509), and Phil Zimmerman (PGP).

Nikhil Bhargava (IIT Delhi) developed the set of online homework problems and so-
lutions. Dan Shumow of Microsoft and the University of Washington developed all of the
Sage examples and assignments in Appendices B and C. Professor Sreekanth Malladi of

PREFACE XixX

Dakota State University developed the hacking exercises. Lawrie Brown of the Australian
Defence Force Academy provided the AES/DES block cipher projects and the security
assessment assignments.

Sanjay Rao and Ruben Torres of Purdue University developed the laboratory exer-
cises that appear in the IRC. The following people contributed project assignments that
appear in the instructor’s supplement: Henning Schulzrinne (Columbia University); Cetin
Kaya Koc (Oregon State University); and David Balenson (Trusted Information Systems
and George Washington University). Kim McLaughlin developed the test bank.

Finally, I thank the many people responsible for the publication of this book, all of
whom did their usual excellent job. This includes the staff at Pearson, particularly my editor
Tracy Johnson, associate editor Carole Snyder, production supervisor Robert Engelhardt,
and production project manager Pat Brown. I also thank Shiny Rajesh and the production
staff at Integra for another excellent and rapid job. Thanks also to the marketing and sales
staffs at Pearson, without whose efforts this book would not be in front of you.

With all this assistance, little remains for which I can take full credit. However, I am
proud to say that, with no help whatsoever, I selected all of the quotations.

ABOUT THE AUTHOR

Dr. William Stallings has authored 17 titles, and counting revised editions, over 40 books
on computer security, computer networking, and computer architecture. His writings have
appeared in numerous publications, including the Proceedings of the IEEE, ACM Comput-
ing Reviews and Cryptologia.

He has 11 times received the award for the best Computer Science textbook of the
year from the Text and Academic Authors Association.

In over 30 years in the field, he has been a technical contributor, technical manager,
and an executive with several high-technology firms. He has designed and implemented
both TCP/IP-based and OSI-based protocol suites on a variety of computers and operating
systems, ranging from microcomputers to mainframes. As a consultant, he has advised gov-
ernment agencies, computer and software vendors, and major users on the design, selection,
and use of networking software and products.

He created and maintains the Computer Science Student Resource Site at
ComputerScienceStudent.com. This site provides documents and links on a variety of sub-
jects of general interest to computer science students (and professionals). He is a member of
the editorial board of Cryptologia, a scholarly journal devoted to all aspects of cryptology.

Dr. Stallings holds a PhD from MIT in computer science and a BS from Notre Dame
in electrical engineering.

This page intentionally left blank

CHAPTER

GUIDE FOR READERS

AND

0.1
0.2

0.3

0.4

INSTRUCTORS

Outline of This Book
A Roadmap for Readers and Instructors

Subject Matter
Topic Ordering

Internet and Web Resources

Web Sites for This Book
Computer Science Student Resource Site
Other Web Sites

Standards

2 CHAPTER 0 / GUIDE FOR READERS AND INSTRUCTORS

The art of war teaches us to rely not on the likelihood of the enemy’s not coming,
but on our own readiness to receive him; not on the chance of his not attacking, but
rather on the fact that we have made our position unassailable.

—The Art of War, Sun Tzu

This book, with its accompanying Web sites, covers a lot of material. Here we give
the reader an overview.

0.1 OUTLINE OF THIS BOOK

Following an introductory chapter, Chapter 1, the book is organized into seven

parts:

Part One:

Part Two:

Part Three:

Part Four:

Part Five:

Part Six:

Part Seven:

Symmetric Ciphers: Provides a survey of symmetric encryption,
including classical and modern algorithms. The emphasis is on the most
important algorithm, the Advanced Encryption Standard (AES). Also
covered is the Data Encryption Standard (DES). This part also covers
the most important stream encryption algorithm, RC4, and the topic of
pseudorandom and random number generation.

Asymmetric Ciphers: Provides a survey of public-key algorithms,
including RSA (Rivest-Shamir-Adelman) and elliptic curve.

Cryptographic Data Integrity Algorithms: Begins with a survey of
cryptographic hash functions. This part then covers two approaches
to data integrity that rely on cryptographic hash functions: message
authentication codes and digital signatures.

Mutual Trust: Covers key management and key distribution topics and
then covers user authentication techniques.

Network Security and Internet Security: Examines the use of crypto-
graphic algorithms and security protocols to provide security over net-
works and the Internet. Topics covered include network access control,
cloud security, transport-level security, wireless network security, e-mail
security, and IP security.

System Security: Deals with security facilities designed to protect a
computer system from security threats, including intruders, viruses,
and worms. This part also looks at firewall technology.

Legal and Ethical Issues: Deals with the legal and ethical issues related
to computer and network security.

A number of online appendices at this book’s Premium Content Web site
cover additional topics relevant to the book.

The material in this book is organized into four broad categories:

Cryptographic algorithms: This is the study of techniques for ensuring the
secrecy and/or authenticity of information. The three main areas of study in
this category are (1) symmetric encryption, (2) asymmetric encryption, and
(3) cryptographic hash functions, with the related topics of message authenti-
cation codes and digital signatures.

Mutual trust: This is the study of techniques and algorithms for providing
mutual trust in two main areas. First, key management and distribution deals
with establishing trust in the encryption keys used between two communicat-
ing entities. Second, user authentication deals with establishing trust in the
identity of a communicating partner.

Network security: This area covers the use of cryptographic algorithms in
network protocols and network applications.

Computer security: In this book, we use this term to refer to the security
of computers against intruders (e.g., hackers) and malicious software (e.g.,
viruses). Typically, the computer to be secured is attached to a network, and
the bulk of the threats arise from the network.

The first two parts of the book deal with two distinct cryptographic
approaches: symmetric cryptographic algorithms and public-key, or asymmetric,
cryptographic algorithms. Symmetric algorithms make use of a single key shared
by two parties. Public-key algorithms make use of two keys: a private key known
only to one party and a public key available to other parties.

This book covers a lot of material. For the instructor or reader who wishes a shorter
treatment, there are a number of opportunities.

To thoroughly cover the material in the first three parts, the chapters should
be read in sequence. With the exception of the Advanced Encryption Standard
(AES), none of the material in Part One requires any special mathematical back-
ground. To understand AES, it is necessary to have some understanding of finite
fields. In turn, an understanding of finite fields requires a basic background in
prime numbers and modular arithmetic. Accordingly, Chapter 4 covers all of these
mathematical preliminaries just prior to their use in Chapter 5 on AES. Thus, if
Chapter 5 is skipped, it is safe to skip Chapter 4 as well.

Chapter 2 introduces some concepts that are useful in later chapters of Part
One. However, for the reader whose sole interest is contemporary cryptography, this
chapter can be quickly skimmed. The two most important symmetric cryptographic
algorithms are DES and AES, which are covered in Chapters 3 and 5, respectively.

4 CHAPTER 0 / GUIDE FOR READERS AND INSTRUCTORS

Chapter 6 covers specific techniques for using what are known as block
symmetric ciphers. Chapter 7 covers stream ciphers and random number
generation. These two chapters may be skipped on an initial reading, but this
material is referenced in later parts of the book.

For Part Two, the only additional mathematical background that is needed
is in the area of number theory, which is covered in Chapter 8. The reader who
has skipped Chapters 4 and 5 should first review the material on Sections 4.1
through 4.3.

The two most widely used general-purpose public-key algorithms are RSA and
elliptic curve, with RSA enjoying wider acceptance. The reader may wish to skip the
material on elliptic curve cryptography in Chapter 10, at least on a first reading.

In Part Three, the topics of Sections 12.6 and 12.7 are of lesser importance.

Parts Four, Five, and Six are relatively independent of each other and can be
read in any order. These three parts assume a basic understanding of the material in
Parts One, Two, and Three. The five chapters of Part Five, on network and Internet
security, are relatively independent of one another and can be read in any order.

0.3 INTERNET AND WEB RESOURCES

There are a number of resources available on the Internet and the Web that support
this book and help readers keep up with developments in this field.

Web Sites for This Book

Three Web sites provide additional resources for students and instructors.

There is a Companion Web site for this book at http://williamstallings.com/
Cryptography. For students, this Web site includes a list of relevant links, organized
by chapter, and an errata list for the book. For instructors, this Web site provides
links to course pages by professors teaching from this book.

There is also an access-controlled Premium Content Web site, which provides
a wealth of supporting material, including additional online chapters, additional on-
line appendices, a set of homework problems with solutions, copies of a number of
key papers in this field, and a number of other supporting documents. See the card
at the front of this book for access information.

Finally, additional material for instructors, including a solutions manual and a
projects manual, is available at the Instructor Resource Center (IRC) for this book.
See Preface for details and access information.

Computer Science Student Resource Site

I also maintain the Computer Science Student Resource Site, at Computer
ScienceStudent.com. The purpose of this site is to provide documents, information,
and links for computer science students and professionals. Links and documents are
organized into seven categories:

° Math: Includes a basic math refresher, a queuing analysis primer, a number
system primer, and links to numerous math sites.

http://williamstallings.com/

5

How-to: Advice and guidance for solving homework problems, writing techni-
cal reports, and preparing technical presentations.

Research resources: Links to important collections of papers, technical reports,
and bibliographies.

Other useful: A variety of other useful documents and links.

Computer science careers: Useful links and documents for those considering a
career in computer science.

Writing help: Help in becoming a clearer, more effective writer.

Miscellaneous topics and humor: You have to take your mind off your work
once in a while.

Numerous Web sites provide information related to the topics of this book. The
Companion Web site provides links to these sites, organized by chapter. In addition,
there are a number of forums dealing with cryptography available on the Internet.
Links to these forums are provided at the Companion Website.

Many of the security techniques and applications described in this book have been
specified as standards. Additionally, standards have been developed to cover man-
agement practices and the overall architecture of security mechanisms and services.
Throughout this book, we describe the most important standards in use or being
developed for various aspects of cryptography and network security. Various orga-
nizations have been involved in the development or promotion of these standards.
The most important (in the current context) of these organizations are as follows:

National Institute of Standards and Technology (NIST): NIST is a U.S. fed-
eral agency that deals with measurement science, standards, and technology
related to U.S. government use and to the promotion of U.S. private-sector
innovation. Despite its national scope, NIST Federal Information Processing
Standards (FIPS) and Special Publications (SP) have a worldwide impact.

Internet Society (ISOC): ISOC is a professional membership society with
worldwide organizational and individual membership. It provides leader-
ship in addressing issues that confront the future of the Internet and is the
organization home for the groups responsible for Internet infrastructure
standards, including the Internet Engineering Task Force (IETF) and the
Internet Architecture Board (IAB). These organizations develop Internet
standards and related specifications, all of which are published as Requests for
Comments (RFCs).

ITU-T: The International Telecommunication Union (ITU) is an international
organization within the United Nations System in which governments and
the private sector coordinate global telecom networks and services. The ITU

Telecommunication Standardization Sector (ITU-T) is one of the three sectors
of the ITU. ITU-T’s mission is the production of standards covering all fields of
telecommunications. ITU-T standards are referred to as Recommendations.

ISO: The International Organization for Standardization (ISO)! is a world-
wide federation of national standards bodies from more than 140 countries,
one from each country. ISO is a nongovernmental organization that pro-
motes the development of standardization and related activities with a view
to facilitating the international exchange of goods and services and to devel-
oping cooperation in the spheres of intellectual, scientific, technological, and
economic activity. ISO’s work results in international agreements that are
published as International Standards.

A more detailed discussion of these organizations is contained in Appendix D.

ISO is not an acronym (in which case it would be TOS), but it is a word, derived from the Greek,
meaning equal.

OVERVIEW

1.1

1.2
1.3

1.4

1.5
1.6
1.7
1.8

Computer Security Concepts

A Definition of Computer Security
Examples
The Challenges of Computer Security

The OSI Security Architecture
Security Attacks

Passive Attacks
Active Attacks

Security Services

Authentication
Access Control
Data Confidentiality
Data Integrity
Nonrepudiation
Availability Service

Security Mechanisms
A Model for Network Security
Recommended Reading

Key Terms, Review Questions, and Problems

The combination of space, time, and strength that must be considered as the
basic elements of this theory of defense makes this a fairly complicated matter.
Consequently, it is not easy to find a fixed point of departure.

— On War, Carl Von Clausewitz

LEARNING OBJECTIVES

After studying this chapter, you should be able to:
Describe the key security requirements of confidentiality, integrity, and
availability.
Discuss the types of security threats and attacks that must be dealt with

and give examples of the types of threats and attacks that apply to different
categories of computer and network assets.

Summarize the functional requirements for computer security.
Describe the X.800 security architecture for OSI.

This book focuses on two broad areas: cryptographic algorithms and protocols, which
have a broad range of applications; and network and Internet security, which rely
heavily on cryptographic techniques.

Cryptographic algorithms and protocols can be grouped into four main areas:

Symmetric encryption: Used to conceal the contents of blocks or streams of
data of any size, including messages, files, encryption keys, and passwords.

Asymmetric encryption: Used to conceal small blocks of data, such as encryp-
tion keys and hash function values, which are used in digital signatures.

Data integrity algorithms: Used to protect blocks of data, such as messages,
from alteration.

Authentication protocols: These are schemes based on the use of crypto-
graphic algorithms designed to authenticate the identity of entities.

The field of network and Internet security consists of measures to deter, prevent,
detect, and correct security violations that involve the transmission of information.
That is a broad statement that covers a host of possibilities. To give you a feel for the
areas covered in this book, consider the following examples of security violations:

User A transmits a file to user B. The file contains sensitive information (e.g.,
payroll records) that is to be protected from disclosure. User C, who is not
authorized to read the file, is able to monitor the transmission and capture a
copy of the file during its transmission.

A network manager, D, transmits a message to a computer, E, under its man-
agement. The message instructs computer E to update an authorization file to
include the identities of a number of new users who are to be given access to

1.1 / COMPUTER SECURITY CONCEPTS 9

that computer. User F intercepts the message, alters its contents to add or delete
entries, and then forwards the message to computer E, which accepts the message
as coming from manager D and updates its authorization file accordingly.

3. Rather than intercept a message, user F constructs its own message with the
desired entries and transmits that message to computer E as if it had come
from manager D. Computer E accepts the message as coming from manager D
and updates its authorization file accordingly.

4. An employee is fired without warning. The personnel manager sends a
message to a server system to invalidate the employee’s account. When the
invalidation is accomplished, the server is to post a notice to the employee’s
file as confirmation of the action. The employee is able to intercept the mes-
sage and delay it long enough to make a final access to the server to retrieve
sensitive information. The message is then forwarded, the action taken, and
the confirmation posted. The employee’s action may go unnoticed for some
considerable time.

5. A message is sent from a customer to a stockbroker with instructions for various
transactions. Subsequently, the investments lose value and the customer denies
sending the message.

Although this list by no means exhausts the possible types of network security viola-
tions, it illustrates the range of concerns of network security.

1.1 COMPUTER SECURITY CONCEPTS

A Definition of Computer Security

The NIST Computer Security Handbook [NIST95] defines the term computer secu-
rity as follows:

Computer Security: The protection afforded to an automated information system
in order to attain the applicable objectives of preserving the integrity, availability,
and confidentiality of information system resources (includes hardware, software,
firmware, information/data, and telecommunications).

This definition introduces three key objectives that are at the heart of computer
security:

* Confidentiality: This term covers two related concepts:

Data' confidentiality: Assures that private or confidential information is
not made available or disclosed to unauthorized individuals.

'RFC 4949 defines information as “facts and ideas, which can be represented (encoded) as various forms
of data,” and data as “information in a specific physical representation, usually a sequence of symbols
that have meaning; especially a representation of information that can be processed or produced by a
computer.” Security literature typically does not make much of a distinction, nor does this book.

10

Privacy: Assures that individuals control or influence what information
related to them may be collected and stored and by whom and to whom
that information may be disclosed.

Integrity: This term covers two related concepts:

Data integrity: Assures that information and programs are changed only in
a specified and authorized manner.

System integrity: Assures that a system performs its intended function in
an unimpaired manner, free from deliberate or inadvertent unauthorized
manipulation of the system.

Availability: Assures that systems work promptly and service is not denied to
authorized users.

These three concepts form what is often referred to as the CIA triad. The three
concepts embody the fundamental security objectives for both data and for informa-
tion and computing services. For example, the NIST standard FIPS 199 (Standards
for Security Categorization of Federal Information and Information Systems) lists
confidentiality, integrity, and availability as the three security objectives for infor-
mation and for information systems. FIPS 199 provides a useful characterization of
these three objectives in terms of requirements and the definition of a loss of security
in each category:

Confidentiality: Preserving authorized restrictions on information access
and disclosure, including means for protecting personal privacy and propri-
etary information. A loss of confidentiality is the unauthorized disclosure of
information.

Integrity: Guarding against improper information modification or destruc-
tion, including ensuring information nonrepudiation and authenticity. A loss
of integrity is the unauthorized modification or destruction of information.

Availability: Ensuring timely and reliable access to and use of information.
A loss of availability is the disruption of access to or use of information or an
information system.

Although the use of the CIA triad to define security objectives is well estab-
lished, some in the security field feel that additional concepts are needed to present
a complete picture. Two of the most commonly mentioned are as follows:

Authenticity: The property of being genuine and being able to be verified and
trusted; confidence in the validity of a transmission, a message, or message
originator. This means verifying that users are who they say they are and that
each input arriving at the system came from a trusted source.

Accountability: The security goal that generates the requirement for actions
of an entity to be traced uniquely to that entity. This supports nonrepudia-
tion, deterrence, fault isolation, intrusion detection and prevention, and after-
action recovery and legal action. Because truly secure systems are not yet an
achievable goal, we must be able to trace a security breach to a responsible
party. Systems must keep records of their activities to permit later forensic
analysis to trace security breaches or to aid in transaction disputes.

11

We now provide some examples of applications that illustrate the requirements just
enumerated.? For these examples, we use three levels of impact on organizations or
individuals should there be a breach of security (i.e., a loss of confidentiality, integ-
rity, or availability). These levels are defined in FIPS PUB 199:

Low: The loss could be expected to have a limited adverse effect on organi-
zational operations, organizational assets, or individuals. A limited adverse
effect means that, for example, the loss of confidentiality, integrity, or avail-
ability might (i) cause a degradation in mission capability to an extent and
duration that the organization is able to perform its primary functions, but the
effectiveness of the functions is noticeably reduced; (ii) result in minor dam-
age to organizational assets; (iii) result in minor financial loss; or (iv) result in
minor harm to individuals.

Moderate: The loss could be expected to have a serious adverse effect on
organizational operations, organizational assets, or individuals. A serious
adverse effect means that, for example, the loss might (i) cause a signifi-
cant degradation in mission capability to an extent and duration that the
organization is able to perform its primary functions, but the effectiveness
of the functions is significantly reduced; (ii) result in significant damage to
organizational assets; (iii) result in significant financial loss; or (iv) result in
significant harm to individuals that does not involve loss of life or serious,
life-threatening injuries.

High: The loss could be expected to have a severe or catastrophic adverse
effect on organizational operations, organizational assets, or individuals.
A severe or catastrophic adverse effect means that, for example, the loss might
(i) cause a severe degradation in or loss of mission capability to an extent and
duration that the organization is not able to perform one or more of its pri-
mary functions; (ii) result in major damage to organizational assets; (iii) result
in major financial loss; or (iv) result in severe or catastrophic harm to individu-
als involving loss of life or serious, life-threatening injuries.

Student grade information is an asset whose confidentiality is
considered to be highly important by students. In the United States, the release of
such information is regulated by the Family Educational Rights and Privacy Act
(FERPA). Grade information should only be available to students, their parents,
and employees that require the information to do their job. Student enrollment
information may have a moderate confidentiality rating. While still covered by
FERPA, this information is seen by more people on a daily basis, is less likely to be
targeted than grade information, and results in less damage if disclosed. Directory
information, such as lists of students or faculty or departmental lists, may be
assigned a low confidentiality rating or indeed no rating. This information is typi-
cally freely available to the public and published on a school’s Web site.

’These examples are taken from a security policy document published by the Information Technology
Security and Privacy Office at Purdue University.

12

Several aspects of integrity are illustrated by the example of a hospital
patient’s allergy information stored in a database. The doctor should be able to
trust that the information is correct and current. Now suppose that an employee
(e.g., a nurse) who is authorized to view and update this information deliberately
falsifies the data to cause harm to the hospital. The database needs to be restored
to a trusted basis quickly, and it should be possible to trace the error back to the
person responsible. Patient allergy information is an example of an asset with a high
requirement for integrity. Inaccurate information could result in serious harm or
death to a patient and expose the hospital to massive liability.

An example of an asset that may be assigned a moderate level of integrity
requirement is a Web site that offers a forum to registered users to discuss some
specific topic. Either a registered user or a hacker could falsify some entries or
deface the Web site. If the forum exists only for the enjoyment of the users, brings
in little or no advertising revenue, and is not used for something important such
as research, then potential damage is not severe. The Web master may experience
some data, financial, and time loss.

An example of a low integrity requirement is an anonymous online poll. Many
Web sites, such as news organizations, offer these polls to their users with very few
safeguards. However, the inaccuracy and unscientific nature of such polls is well
understood.

The more critical a component or service, the higher is the level
of availability required. Consider a system that provides authentication ser-
vices for critical systems, applications, and devices. An interruption of service
results in the inability for customers to access computing resources and staff to
access the resources they need to perform critical tasks. The loss of the service
translates into a large financial loss in lost employee productivity and potential
customer loss.

An example of an asset that would typically be rated as having a moderate
availability requirement is a public Web site for a university; the Web site provides
information for current and prospective students and donors. Such a site is not a
critical component of the university’s information system, but its unavailability will
cause some embarrassment.

An online telephone directory lookup application would be classified as a low
availability requirement. Although the temporary loss of the application may be
an annoyance, there are other ways to access the information, such as a hardcopy
directory or the operator.

Computer and network security is both fascinating and complex. Some of the
reasons follow:

Security is not as simple as it might first appear to the novice. The require-
ments seem to be straightforward; indeed, most of the major requirements
for security services can be given self-explanatory, one-word labels: confiden-
tiality, authentication, nonrepudiation, or integrity. But the mechanisms used

13

to meet those requirements can be quite complex, and understanding them
may involve rather subtle reasoning.

In developing a particular security mechanism or algorithm, one must always
consider potential attacks on those security features. In many cases, successful
attacks are designed by looking at the problem in a completely different way,
therefore exploiting an unexpected weakness in the mechanism.

Because of point 2, the procedures used to provide particular services are
often counterintuitive. Typically, a security mechanism is complex, and it is
not obvious from the statement of a particular requirement that such elabo-
rate measures are needed. It is only when the various aspects of the threat are
considered that elaborate security mechanisms make sense.

Having designed various security mechanisms, it is necessary to decide where
to use them. This is true both in terms of physical placement (e.g., at what points
in a network are certain security mechanisms needed) and in a logical sense
(e.g., at what layer or layers of an architecture such as TCP/IP [Transmission
Control Protocol/Internet Protocol] should mechanisms be placed).

Security mechanisms typically involve more than a particular algorithm or
protocol. They also require that participants be in possession of some secret
information (e.g., an encryption key), which raises questions about the cre-
ation, distribution, and protection of that secret information. There also may
be a reliance on communications protocols whose behavior may complicate
the task of developing the security mechanism. For example, if the proper
functioning of the security mechanism requires setting time limits on the tran-
sit time of a message from sender to receiver, then any protocol or network
that introduces variable, unpredictable delays may render such time limits
meaningless.

Computer and network security is essentially a battle of wits between a per-
petrator who tries to find holes and the designer or administrator who tries to
close them. The great advantage that the attacker has is that he or she need
only find a single weakness, while the designer must find and eliminate all
weaknesses to achieve perfect security.

There is a natural tendency on the part of users and system managers to per-
ceive little benefit from security investment until a security failure occurs.

Security requires regular, even constant, monitoring, and this is difficult in
today’s short-term, overloaded environment.

Security is still too often an afterthought to be incorporated into a system
after the design is complete rather than being an integral part of the design
process.

Many users and even security administrators view strong security as an impedi-
ment to efficient and user-friendly operation of an information system or use of
information.

The difficulties just enumerated will be encountered in numerous ways as we
examine the various security threats and mechanisms throughout this book.

14

To assess effectively the security needs of an organization and to evaluate and
choose various security products and policies, the manager responsible for security
needs some systematic way of defining the requirements for security and character-
izing the approaches to satisfying those requirements. This is difficult enough in a
centralized data processing environment; with the use of local and wide area net-
works, the problems are compounded.

ITU-T? Recommendation X.800, Security Architecture for OSI, defines such a
systematic approach.* The OSI security architecture is useful to managers as a way
of organizing the task of providing security. Furthermore, because this architecture
was developed as an international standard, computer and communications vendors
have developed security features for their products and services that relate to this
structured definition of services and mechanisms.

For our purposes, the OSI security architecture provides a useful, if abstract,
overview of many of the concepts that this book deals with. The OSI security archi-
tecture focuses on security attacks, mechanisms, and services. These can be defined
briefly as

Security attack: Any action that compromises the security of information
owned by an organization.

Security mechanism: A process (or a device incorporating such a process) that
is designed to detect, prevent, or recover from a security attack.

Security service: A processing or communication service that enhances the
security of the data processing systems and the information transfers of an
organization. The services are intended to counter security attacks, and they
make use of one or more security mechanisms to provide the service.

In the literature, the terms threat and attack are commonly used to mean more
or less the same thing. Table 1.1 provides definitions taken from RFC 4949, Internet
Security Glossary.

Threats and Attacks (RFC 4949)

Threat

A potential for violation of security, which exists when there is a circumstance, capability, action, or
event that could breach security and cause harm. That is, a threat is a possible danger that might
exploit a vulnerability.

Attack

An assault on system security that derives from an intelligent threat; that is, an intelligent act that
is a deliberate attempt (especially in the sense of a method or technique) to evade security services
and violate the security policy of a system.

3The International Telecommunication Union (ITU) Telecommunication Standardization Sector (ITU-T)
is a United Nations-sponsored agency that develops standards, called Recommendations, relating to
telecommunications and to open systems interconnection (OSI).

“The OSI security architecture was developed in the context of the OSI protocol architecture, which is
described in Appendix L. However, for our purposes in this chapter, an understanding of the OSI proto-
col architecture is not required.

1.3 / SECURITY ATTACKS 15

1.3 SECURITY ATTACKS

A useful means of classifying security attacks, used both in X.800 and RFC 4949, is in
terms of passive attacks and active attacks (Figure 1.1). A passive attack attempts to
learn or make use of information from the system but does not affect system resources.
An active attack attempts to alter system resources or affect their operation.

Passive Attacks

Passive attacks (Figure 1.1) are in the nature of eavesdropping on, or monitoring
of, transmissions. The goal of the opponent is to obtain information that is being
transmitted. Two types of passive attacks are the release of message contents and
traffic analysis.

Internet or
other communications facility

Bob Alice

(a) Passive attacks

Internet or
other communications facility,

Bob

(b) Active attacks

Figure 1.1 Security Attacks

16

The release of message contents is easily understood. A telephone conver-
sation, an electronic mail message, and a transferred file may contain sensitive or
confidential information. We would like to prevent an opponent from learning the
contents of these transmissions.

A second type of passive attack, traffic analysis, is subtler. Suppose that we
had a way of masking the contents of messages or other information traffic so that
opponents, even if they captured the message, could not extract the information
from the message. The common technique for masking contents is encryption. If we
had encryption protection in place, an opponent might still be able to observe the
pattern of these messages. The opponent could determine the location and identity
of communicating hosts and could observe the frequency and length of messages
being exchanged. This information might be useful in guessing the nature of the
communication that was taking place.

Passive attacks are very difficult to detect, because they do not involve any
alteration of the data. Typically, the message traffic is sent and received in an appar-
ently normal fashion, and neither the sender nor receiver is aware that a third party
has read the messages or observed the traffic pattern. However, it is feasible to pre-
vent the success of these attacks, usually by means of encryption. Thus, the emphasis
in dealing with passive attacks is on prevention rather than detection.

Active attacks (Figure 1.1b) involve some modification of the data stream or the
creation of a false stream and can be subdivided into four categories: masquerade,
replay, modification of messages, and denial of service.

A masquerade takes place when one entity pretends to be a different entity
(path 2 of Figure 1.1b is active). A masquerade attack usually includes one of the
other forms of active attack. For example, authentication sequences can be captured
and replayed after a valid authentication sequence has taken place, thus enabling an
authorized entity with few privileges to obtain extra privileges by impersonating an
entity that has those privileges.

Replay involves the passive capture of a data unit and its subsequent retrans-
mission to produce an unauthorized effect (paths 1, 2, and 3 active).

Modification of messages simply means that some portion of a legitimate
message is altered, or that messages are delayed or reordered, to produce an
unauthorized effect (paths 1 and 2 active). For example, a message meaning “Allow
John Smith to read confidential file accounts” is modified to mean “Allow Fred
Brown to read confidential file accounts.”

The denial of service prevents or inhibits the normal use or management of
communications facilities (path 3 active). This attack may have a specific target; for
example, an entity may suppress all messages directed to a particular destination
(e.g., the security audit service). Another form of service denial is the disruption
of an entire network, either by disabling the network or by overloading it with
messages so as to degrade performance.

Active attacks present the opposite characteristics of passive attacks. Whereas
passive attacks are difficult to detect, measures are available to prevent their suc-
cess. On the other hand, it is quite difficult to prevent active attacks absolutely

1.4 / SECURITY SERVICES 17

because of the wide variety of potential physical, software, and network vulner-
abilities. Instead, the goal is to detect active attacks and to recover from any dis-
ruption or delays caused by them. If the detection has a deterrent effect, it may also
contribute to prevention.

1.4 SECURITY SERVICES

X.800 defines a security service as a service that is provided by a protocol layer of
communicating open systems and that ensures adequate security of the systems
or of data transfers. Perhaps a clearer definition is found in RFC 4949, which
provides the following definition: a processing or communication service that is
provided by a system to give a specific kind of protection to system resources;
security services implement security policies and are implemented by security
mechanisms.

X.800 divides these services into five categories and fourteen specific services
(Table 1.2). We look at each category in turn.’

Authentication

The authentication service is concerned with assuring that a communication is
authentic. In the case of a single message, such as a warning or alarm signal, the
function of the authentication service is to assure the recipient that the message
is from the source that it claims to be from. In the case of an ongoing interaction,
such as the connection of a terminal to a host, two aspects are involved. First,
at the time of connection initiation, the service assures that the two entities are
authentic, that is, that each is the entity that it claims to be. Second, the service
must assure that the connection is not interfered with in such a way that a third
party can masquerade as one of the two legitimate parties for the purposes of
unauthorized transmission or reception.
Two specific authentication services are defined in X.800:

° Peer entity authentication: Provides for the corroboration of the identity
of a peer entity in an association. Two entities are considered peers if they
implement to same protocol in different systems; for example two TCP mod-
ules in two communicating systems. Peer entity authentication is provided for
use at the establishment of, or at times during the data transfer phase of, a
connection. It attempts to provide confidence that an entity is not performing
either a masquerade or an unauthorized replay of a previous connection.

* Data origin authentication: Provides for the corroboration of the source of a
data unit. It does not provide protection against the duplication or modification
of data units. This type of service supports applications like electronic mail,
where there are no prior interactions between the communicating entities.

SThere is no universal agreement about many of the terms used in the security literature. For example, the
term integrity is sometimes used to refer to all aspects of information security. The term authentication is
sometimes used to refer both to verification of identity and to the various functions listed under integrity
in this chapter. Our usage here agrees with both X.800 and RFC 4949.

18

Security Services (X.800)

AUTHENTICATION

The assurance that the communicating entity is the
one that it claims to be.

Peer Entity Authentication

Used in association with a logical connection to
provide confidence in the identity of the entities
connected.

Data-Origin Authentication
In a connectionless transfer, provides assurance that
the source of received data is as claimed.

ACCESS CONTROL

The prevention of unauthorized use of a resource
(i-e., this service controls who can have access to a
resource, under what conditions access can occur,
and what those accessing the resource are allowed
to do).

DATA CONFIDENTIALITY

The protection of data from unauthorized
disclosure.

Connection Confidentiality
The protection of all user data on a connection.

Connectionless Confidentiality
The protection of all user data in a single data block

Selective-Field Confidentiality
The confidentiality of selected fields within the user
data on a connection or in a single data block.

Traffic-Flow Confidentiality
The protection of the information that might be
derived from observation of traffic flows.

DATA INTEGRITY

The assurance that data received are exactly as
sent by an authorized entity (i.e., contain no
modification, insertion, deletion, or replay).

Connection Integrity with Recovery

Provides for the integrity of all user data on a
connection and detects any modification, insertion,
deletion, or replay of any data within an entire data
sequence, with recovery attempted.

Connection Integrity without Recovery
As above, but provides only detection without recovery.

Selective-Field Connection Integrity

Provides for the integrity of selected fields within the
user data of a data block transferred over a connec-
tion and takes the form of determination of whether
the selected fields have been modified, inserted,
deleted, or replayed.

Connectionless Integrity

Provides for the integrity of a single connectionless
data block and may take the form of detection of
data modification. Additionally, a limited form of
replay detection may be provided.

Selective-Field Connectionless Integrity

Provides for the integrity of selected fields within a
single connectionless data block; takes the form of
determination of whether the selected fields have
been modified.

NONREPUDIATION
Provides protection against denial by one of the
entities involved in a communication of having
participated in all or part of the communication.

Nonrepudiation, Origin
Proof that the message was sent by the specified party.

Nonrepudiation, Destination
Proof that the message was received by the specified

party.

In the context of network security, access control is the ability to limit and control
the access to host systems and applications via communications links. To achieve
this, each entity trying to gain access must first be identified, or authenticated, so
that access rights can be tailored to the individual.

19

Confidentiality is the protection of transmitted data from passive attacks. With
respect to the content of a data transmission, several levels of protection can be
identified. The broadest service protects all user data transmitted between two
users over a period of time. For example, when a TCP connection is set up between
two systems, this broad protection prevents the release of any user data transmit-
ted over the TCP connection. Narrower forms of this service can also be defined,
including the protection of a single message or even specific fields within a message.
These refinements are less useful than the broad approach and may even be more
complex and expensive to implement.

The other aspect of confidentiality is the protection of traffic flow from analysis.
This requires that an attacker not be able to observe the source and destination, fre-
quency, length, or other characteristics of the traffic on a communications facility.

As with confidentiality, integrity can apply to a stream of messages, a single mes-
sage, or selected fields within a message. Again, the most useful and straightforward
approach is total stream protection.

A connection-oriented integrity service, one that deals with a stream of mes-
sages, assures that messages are received as sent with no duplication, insertion,
modification, reordering, or replays. The destruction of data is also covered under
this service. Thus, the connection-oriented integrity service addresses both message
stream modification and denial of service. On the other hand, a connectionless in-
tegrity service, one that deals with individual messages without regard to any larger
context, generally provides protection against message modification only.

We can make a distinction between service with and without recovery.
Because the integrity service relates to active attacks, we are concerned with detec-
tion rather than prevention. If a violation of integrity is detected, then the service
may simply report this violation, and some other portion of software or human
intervention is required to recover from the violation. Alternatively, there are
mechanisms available to recover from the loss of integrity of data, as we will review
subsequently. The incorporation of automated recovery mechanisms is, in general,
the more attractive alternative.

Nonrepudiation prevents either sender or receiver from denying a transmitted mes-
sage. Thus, when a message is sent, the receiver can prove that the alleged sender in
fact sent the message. Similarly, when a message is received, the sender can prove
that the alleged receiver in fact received the message.

Both X.800 and RFC 4949 define availability to be the property of a system or a
system resource being accessible and usable upon demand by an authorized system
entity, according to performance specifications for the system (i.e., a system is avail-
able if it provides services according to the system design whenever users request

20

them). A variety of attacks can result in the loss of or reduction in availability. Some
of these attacks are amenable to automated countermeasures, such as authentica-
tion and encryption, whereas others require some sort of physical action to prevent
or recover from loss of availability of elements of a distributed system.

X.800 treats availability as a property to be associated with various security
services. However, it makes sense to call out specifically an availability service. An
availability service is one that protects a system to ensure its availability. This ser-
vice addresses the security concerns raised by denial-of-service attacks. It depends
on proper management and control of system resources and thus depends on access
control service and other security services.

Table 1.3 lists the security mechanisms defined in X.800. The mechanisms are
divided into those that are implemented in a specific protocol layer, such as TCP
or an application-layer protocol, and those that are not specific to any particu-
lar protocol layer or security service. These mechanisms will be covered in the
appropriate places in the book. So we do not elaborate now, except to comment
on the definition of encipherment. X.800 distinguishes between reversible enci-
pherment mechanisms and irreversible encipherment mechanisms. A reversible

Security Mechanisms (X.800)

SPECIFIC SECURITY MECHANISMS

May be incorporated into the appropriate protocol
layer in order to provide some of the OSI security
services.

Encipherment

The use of mathematical algorithms to transform
data into a form that is not readily intelligible. The
transformation and subsequent recovery of the
data depend on an algorithm and zero or more
encryption keys.

Digital Signature

Data appended to, or a cryptographic transformation
of, a data unit that allows a recipient of the data unit

to prove the source and integrity of the data unit and
protect against forgery (e.g., by the recipient).

Access Control
A variety of mechanisms that enforce access rights to
resources.

Data Integrity
A variety of mechanisms used to assure the integrity
of a data unit or stream of data units.

PERVASIVE SECURITY MECHANISMS

Mechanisms that are not specific to any particular
OSI security service or protocol layer.

Trusted Functionality
That which is perceived to be correct with respect
to some criteria (e.g., as established by a security

policy).

Security Label

The marking bound to a resource (which may be a
data unit) that names or designates the security attri-
butes of that resource.

Event Detection
Detection of security-relevant events.

Security Audit Trail

Data collected and potentially used to facilitate a
security audit, which is an independent review and
examination of system records and activities.

Security Recovery

Deals with requests from mechanisms, such as event
handling and management functions, and takes
recovery actions.

21

Continued

SPECIFIC SECURITY MECHANISMS

Authentication Exchange
A mechanism intended to ensure the identity of an
entity by means of information exchange.

Traffic Padding
The insertion of bits into gaps in a data stream to
frustrate traffic analysis attempts.

Routing Control

Enables selection of particular physically secure
routes for certain data and allows routing changes,
especially when a breach of security is suspected.

Notarization
The use of a trusted third party to assure certain
properties of a data exchange.

encipherment mechanism is simply an encryption algorithm that allows data to
be encrypted and subsequently decrypted. Irreversible encipherment mechanisms
include hash algorithms and message authentication codes, which are used in digi-
tal signature and message authentication applications.

Table 1.4, based on one in X.800, indicates the relationship between security
services and security mechanisms.

Relationship Between Security Services and Mechanisms

MECHANISM
o
{bto%
&
& %
S/ WS
&/ LSS >/ &
e&&\‘%&Q cp& @%\\ R > Q%bb oo°° &&\0\
QO Y,
SERVICE SIS SUSISIS
v SRV AVAVA VAV Vi
Peer entity authentication Y |Y Y
Data origin authentication
Access control Y
Confidentiality Y Y
Traffic flow confidentiality Y Y
Data integrity Y |Y Y
Nonrepudiation Y Y Y
Availability Y |Y

22 CHAPTER 1 / OVERVIEW

1.6 A MODEL FOR NETWORK SECURITY

A model for much of what we will be discussing is captured, in very general terms, in
Figure 1.2. A message is to be transferred from one party to another across some sort
of Internet service. The two parties, who are the principals in this transaction, must
cooperate for the exchange to take place. A logical information channel is established
by defining a route through the Internet from source to destination and by the coop-
erative use of communication protocols (e.g., TCP/IP) by the two principals.

Security aspects come into play when it is necessary or desirable to protect the in-
formation transmission from an opponent who may present a threat to confidentiality,
authenticity, and so on. All the techniques for providing security have two components:

* A security-related transformation on the information to be sent. Examples
include the encryption of the message, which scrambles the message so that it
is unreadable by the opponent, and the addition of a code based on the con-
tents of the message, which can be used to verify the identity of the sender.

* Some secret information shared by the two principals and, it is hoped, unknown
to the opponent. An example is an encryption key used in conjunction with the
transformation to scramble the message before transmission and unscramble it
on reception.’

A trusted third party may be needed to achieve secure transmission. For
example, a third party may be responsible for distributing the secret information

Trusted third party
(e.g., arbiter, distributer
of secret information)

Sender . Recipient
Information
Security-related channel Security-related
- transformation ° ° transformation -
[0} [0}
%] Q »n D »n 7]
Q QO O O O O
g \f/ 38 3¢ \1/ g
Secret Secret
information information
Opponent

Figure 1.2 Model for Network Security

®Part Two discusses a form of encryption, known as a symmetric encryption, in which only one of the two
principals needs to have the secret information.

23

to the two principals while keeping it from any opponent. Or a third party may be
needed to arbitrate disputes between the two principals concerning the authentic-
ity of a message transmission.

This general model shows that there are four basic tasks in designing a particu-
lar security service:

Design an algorithm for performing the security-related transformation. The
algorithm should be such that an opponent cannot defeat its purpose.

Generate the secret information to be used with the algorithm.
Develop methods for the distribution and sharing of the secret information.

Specify a protocol to be used by the two principals that makes use of the security
algorithm and the secret information to achieve a particular security service.

Parts One through Five of this book concentrate on the types of security mech-
anisms and services that fit into the model shown in Figure 1.2. However, there are
other security-related situations of interest that do not neatly fit this model but are
considered in this book. A general model of these other situations is illustrated in
Figure 1.3, which reflects a concern for protecting an information system from un-
wanted access. Most readers are familiar with the concerns caused by the existence
of hackers, who attempt to penetrate systems that can be accessed over a network.
The hacker can be someone who, with no malign intent, simply gets satisfaction
from breaking and entering a computer system. The intruder can be a disgruntled
employee who wishes to do damage or a criminal who seeks to exploit computer
assets for financial gain (e.g., obtaining credit card numbers or performing illegal
money transfers).

Another type of unwanted access is the placement in a computer system
of logic that exploits vulnerabilities in the system and that can affect application
programs as well as utility programs, such as editors and compilers. Programs can
present two kinds of threats:

Information access threats: Intercept or modify data on behalf of users who
should not have access to that data.

Service threats: Exploit service flaws in computers to inhibit use by legitimate

users.
Information system
Computing resources
Opponent (processor, memory, 1/0)
—human (e.g., hacker) Data
—software () >
(e.g., virus, worm) Processes
Access channel
Software
Gatekeeper
function Internal security controls

Network Access Security Model

24

Viruses and worms are two examples of software attacks. Such attacks can be
introduced into a system by means of a disk that contains the unwanted logic con-
cealed in otherwise useful software. They can also be inserted into a system across a
network; this latter mechanism is of more concern in network security.

The security mechanisms needed to cope with unwanted access fall into
two broad categories (see Figure 1.3). The first category might be termed a gate-
keeper function. It includes password-based login procedures that are designed
to deny access to all but authorized users and screening logic that is designed
to detect and reject worms, viruses, and other similar attacks. Once either an
unwanted user or unwanted software gains access, the second line of defense
consists of a variety of internal controls that monitor activity and analyze stored
information in an attempt to detect the presence of unwanted intruders. These
issues are explored in Part Six.

[STAL12] provides a broad introduction to both computer and network security. [SCHNO00] is
valuable reading for any practitioner in the field of computer or network security: It discusses
the limitations of technology, and cryptography in particular, in providing security and the need
to consider the hardware, the software implementation, the networks, and the people involved
in providing and attacking security.

It is useful to read some of the classic tutorial papers on computer security; these
provide a historical perspective from which to appreciate current work and thinking.”
The papers to read are [WARE79], [BROW72], [SALT75], [SHAN77], and [SUMMS&4].
Two more recent, short treatments of computer security are [ANDRO04] and [LAMPO4].
[NIST95] is an exhaustive (290 pages) treatment of the subject. Another good treatment is
[NRC91]. Also useful is [FRAS97].

ANDRO4 Andrews, M., and Whittaker, J. “Computer Security.” IEEE Security and
Privacy, September/October 2004.

BROW72 Browne, P. “Computer Security—A Survey.” ACM SIGMIS Database,
Fall 1972.

FRAS97 Fraser, B. Site Security Handbook. RFC 2196, September 1997.

LAMP04 Lampson, B. “Computer Security in the Real World,” Computer, June 2004.

NIST95 National Institute of Standards and Technology. An Introduction to Computer
Security: The NIST Handbook. Special Publication 800-12, October 1995.

NRC91 National Research Council. Computers at Risk: Safe Computing in the
Information Age. Washington, D.C.: National Academy Press, 1991.

SALT75 Saltzer, J., and Schroeder, M. “The Protection of Information in Computer
Systems.” Proceedings of the IEEE, September 1975.

SCHNO0 Schneier, B. Secrets and Lies: Digital Security in a Networked World.
New York: Wiley, 2000.

"These classic papers are available in the Premium Content Web site for this book.

1.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 25

SHAN77 Shanker, K. “The Total Computer Security Problem: An Overview.”
Computer, June 1977.

STAL12 Stallings, W., and Brown, L. Computer Security. Upper Saddle River, NJ:
Prentice Hall, 2012.

SUMMB84 Summers, R. “An Overview of Computer Security.” IBM Systems Journal,
Vol. 23, No. 4, 1984.

WARE79 Ware, W., ed. Security Controls for Computer Systems. RAND Report 609-1.
October 1979.

1.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
access control denial of service passive attack
active attack encryption replay
authentication integrity security attacks
authenticity intruder security mechanisms
availability masquerade security services
data confidentiality nonrepudiation traffic analysis
data integrity OSI security architecture

Review Questions

1.1 What is the OSI security architecture?

1.2 What is the difference between passive and active security threats?

1.3 List and briefly define categories of passive and active security attacks.
1.4 List and briefly define categories of security services.

1.5 List and briefly define categories of security mechanisms.

Problems

1.1 Consider an automated teller machine (ATM) in which users provide a personal
identification number (PIN) and a card for account access. Give examples of confi-
dentiality, integrity, and availability requirements associated with the system and, in
each case, indicate the degree of importance of the requirement.

1.2 Repeat Problem 1.1 for a telephone switching system that routes calls through a
switching network based on the telephone number requested by the caller.

1.3 Consider a desktop publishing system used to produce documents for various
organizations.

a. Give an example of a type of publication for which confidentiality of the stored
data is the most important requirement.

b. Give an example of a type of publication in which data integrity is the most impor-
tant requirement.

c. Give an example in which system availability is the most important requirement.

26

For each of the following assets, assign a low, moderate, or high impact level for the
loss of confidentiality, availability, and integrity, respectively. Justify your answers.
An organization managing public information on its Web server.
A law enforcement organization managing extremely sensitive investigative
information.
A financial organization managing routine administrative information (not
privacy-related information).
An information system used for large acquisitions in a contracting organization
contains both sensitive, pre-solicitation phase contract information and routine
administrative information. Assess the impact for the two data sets separately and
the information system as a whole.
A power plant contains a SCADA (supervisory control and data acquisition)
system controlling the distribution of electric power for a large military installa-
tion. The SCADA system contains both real-time sensor data and routine admin-
istrative information. Assess the impact for the two data sets separately and the
information system as a whole.
Draw a matrix similar to Table 1.4 that shows the relationship between security
services and attacks.
Draw a matrix similar to Table 1.4 that shows the relationship between security
mechanisms and attacks.
Read all of the classic papers cited in Section 1.7. Compose a 500-1000 word paper
(or 8-12 slide PowerPoint presentation) that summarizes the key concepts that
emerge from these papers, emphasizing concepts that are common to most or all of
the papers.

PART 1: SYMMETRIC CIPHERS

CLASSICAL ENCRYPTION
TECHNIQUES

2.1 Symmetric Cipher Model

Cryptography
Cryptanalysis and Brute-Force Attack

2.2 Substitution Techniques

Caesar Cipher
Monoalphabetic Ciphers
Playfair Cipher

Hill Cipher
Polyalphabetic Ciphers
One-Time Pad

2.3 Transposition Techniques
2.4 Rotor Machines

2.5 Steganography

2.6 Recommended Reading

2.7 Key Terms, Review Questions, and Problems

27

“I am fairly familiar with all the forms of secret writings, and am myself the author
of a trifling monograph upon the subject, in which I analyze one hundred and sixty
separate ciphers,” said Holmes.

— The Adventure of the Dancing Men, Sir Arthur Conan Doyle

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Present an overview of the main concepts of symmetric cryptography.
Explain the difference between cryptanalysis and brute-force attack.
Understand the operation of a monoalphabetic substitution cipher.
Understand the operation of a polyalphabetic cipher.

Present an overview of the Hill cipher.

Describe the operation of a rotor machine.

Symmetric encryption, also referred to as conventional encryption or single-key
encryption, was the only type of encryption in use prior to the development of public-
key encryption in the 1970s. It remains by far the most widely used of the two types
of encryption. Part One examines a number of symmetric ciphers. In this chapter, we
begin with a look at a general model for the symmetric encryption process; this will
enable us to understand the context within which the algorithms are used. Next, we
examine a variety of algorithms in use before the computer era. Finally, we look briefly
at a different approach known as steganography. Chapters 3 and 5 introduce the two
most widely used symmetric cipher: DES and AES.

Before beginning, we define some terms. An original message is known as the
plaintext, while the coded message is called the ciphertext. The process of convert-
ing from plaintext to ciphertext is known as enciphering or encryption; restoring the
plaintext from the ciphertext is deciphering or decryption. The many schemes used
for encryption constitute the area of study known as cryptography. Such a scheme
is known as a cryptographic system or a cipher. Techniques used for decipher-
ing a message without any knowledge of the enciphering details fall into the area of
cryptanalysis. Cryptanalysis is what the layperson calls “breaking the code.” The areas
of cryptography and cryptanalysis together are called cryptology.

A symmetric encryption scheme has five ingredients (Figure 2.1):

Plaintext: This is the original intelligible message or data that is fed into the
algorithm as input.

Plaintext

input

29

Secret key shared by Secret key shared by
sender and recipient sender and recipient
1" 1
Transmitted
ciphertext
’
Y =E(K, X) X=DK,Y)
Plai
Encryption algorithm Decryption algorithm 0?::1 tleli(t
(e.g., AES) (reverse of encryption P
algorithm)

Simplified Model of Symmetric Encryption

Encryption algorithm: The encryption algorithm performs various substitu-
tions and transformations on the plaintext.

Secret key: The secret key is also input to the encryption algorithm. The key
is a value independent of the plaintext and of the algorithm. The algorithm
will produce a different output depending on the specific key being used at the
time. The exact substitutions and transformations performed by the algorithm
depend on the key.

Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the secret key. For a given message, two different keys will
produce two different ciphertexts. The ciphertext is an apparently random
stream of data and, as it stands, is unintelligible.

Decryption algorithm: This is essentially the encryption algorithm run in
reverse. It takes the ciphertext and the secret key and produces the original
plaintext.

There are two requirements for secure use of conventional encryption:

We need a strong encryption algorithm. At a minimum, we would like the
algorithm to be such that an opponent who knows the algorithm and has
access to one or more ciphertexts would be unable to decipher the ciphertext
or figure out the key. This requirement is usually stated in a stronger form:
The opponent should be unable to decrypt ciphertext or discover the key even
if he or she is in possession of a number of ciphertexts together with the plain-
text that produced each ciphertext.

Sender and receiver must have obtained copies of the secret key in a secure
fashion and must keep the key secure. If someone can discover the key and
knows the algorithm, all communication using this key is readable.

We assume that it is impractical to decrypt a message on the basis of the

ciphertext plus knowledge of the encryption/decryption algorithm. In other words, we
do not need to keep the algorithm secret; we need to keep only the key secret. This
feature of symmetric encryption is what makes it feasible for widespread use. The fact
that the algorithm need not be kept secret means that manufacturers can and have

30

> X

Cryptanalyst A

K
A

Message X Encryption Decryption X Destinati
: > q estination
source algorithm Y = E(K, X) algorithm

- 9

A A
H

Secure channel
Key
source

Model of Symmetric Cryptosystem

developed low-cost chip implementations of data encryption algorithms. These chips
are widely available and incorporated into a number of products. With the use of sym-
metric encryption, the principal security problem is maintaining the secrecy of the key.

Let us take a closer look at the essential elements of a symmetric
encryption scheme, using Figure 2.2. A source produces a message in plaintext,
X =[X, X, ..., Xy]- The M elements of X are letters in some finite alphabet.
Traditionally, the alphabet usually consisted of the 26 capital letters. Nowadays,
the binary alphabet {0, 1} is typically used. For encryption, a key of the form
K = [K, K, . .., Kj] is generated. If the key is generated at the message source,
then it must also be provided to the destination by means of some secure channel.
Alternatively, a third party could generate the key and securely deliver it to both
source and destination.

With the message X and the encryption key K as input, the encryption algo-
rithm forms the ciphertext Y = [V}, Y5, . .., ¥i]. We can write this as

Y = E(X, X)

This notation indicates that Y is produced by using encryption algorithm E as a
function of the plaintext X, with the specific function determined by the value of
the key K.

The intended receiver, in possession of the key, is able to invert the
transformation:

X = D(K,Y)

An opponent, observing Y but not having access to K or X, may attempt
to recover X or K or both X and K. It is assumed that the opponent knows the

31

encryption (E) and decryption (D) algorithms. If the opponent is interested in only
this particular message, then the focus of the effort is to recover X by generating
a plaintext estimate X. Often, however, the opponent is interested in being able
to read future messages as well, in which case an attempt is made to recover K by
generating an estimate K.

Cryptographic systems are characterized along three independent dimensions:

The type of operations used for transforming plaintext to ciphertext. All
encryption algorithms are based on two general principles: substitution, in
which each element in the plaintext (bit, letter, group of bits or letters) is
mapped into another element, and transposition, in which elements in the
plaintext are rearranged. The fundamental requirement is that no information
be lost (i.e., that all operations are reversible). Most systems, referred to as
product systems, involve multiple stages of substitutions and transpositions.

The number of keys used. If both sender and receiver use the same key, the
system is referred to as symmetric, single-key, secret-key, or conventional
encryption. If the sender and receiver use different keys, the system is referred
to as asymmetric, two-key, or public-key encryption.

The way in which the plaintext is processed. A block cipher processes the
input one block of elements at a time, producing an output block for each
input block. A stream cipher processes the input elements continuously,
producing output one element at a time, as it goes along.

Typically, the objective of attacking an encryption system is to recover the key in
use rather than simply to recover the plaintext of a single ciphertext. There are two
general approaches to attacking a conventional encryption scheme:

Cryptanalysis: Cryptanalytic attacks rely on the nature of the algorithm plus
perhaps some knowledge of the general characteristics of the plaintext or
even some sample plaintext—ciphertext pairs. This type of attack exploits the
characteristics of the algorithm to attempt to deduce a specific plaintext or to
deduce the key being used.

Brute-force attack: The attacker tries every possible key on a piece of cipher-
text until an intelligible translation into plaintext is obtained. On average, half
of all possible keys must be tried to achieve success.

If either type of attack succeeds in deducing the key, the effect is catastrophic:
All future and past messages encrypted with that key are compromised.

We first consider cryptanalysis and then discuss brute-force attacks.

Table 2.1 summarizes the various types of cryptanalytic attacks based on the
amount of information known to the cryptanalyst. The most difficult problem is
presented when all that is available is the ciphertext only. In some cases, not even
the encryption algorithm is known, but in general, we can assume that the oppo-
nent does know the algorithm used for encryption. One possible attack under these

32

Types of Attacks on Encrypted Messages

Type of Attack

Known to Cryptanalyst

Ciphertext Only

¢ Encryption algorithm
e Ciphertext

Known Plaintext

¢ Encryption algorithm

e Ciphertext
* One or more plaintext—ciphertext pairs formed with the secret key

Chosen Plaintext e Encryption algorithm

e Ciphertext

e Plaintext message chosen by cryptanalyst, together with its corresponding
ciphertext generated with the secret key

Chosen Ciphertext e Encryption algorithm

e Ciphertext

¢ Ciphertext chosen by cryptanalyst, together with its corresponding decrypted
plaintext generated with the secret key

Chosen Text ¢ Encryption algorithm

e Ciphertext

e Plaintext message chosen by cryptanalyst, together with its corresponding
ciphertext generated with the secret key

e Ciphertext chosen by cryptanalyst, together with its corresponding decrypted
plaintext generated with the secret key

circumstances is the brute-force approach of trying all possible keys. If the key space
is very large, this becomes impractical. Thus, the opponent must rely on an analysis
of the ciphertext itself, generally applying various statistical tests to it. To use this
approach, the opponent must have some general idea of the type of plaintext that
is concealed, such as English or French text, an EXE file, a Java source listing, an
accounting file, and so on.

The ciphertext-only attack is the easiest to defend against because the
opponent has the least amount of information to work with. In many cases, however,
the analyst has more information. The analyst may be able to capture one or more
plaintext messages as well as their encryptions. Or the analyst may know that certain
plaintext patterns will appear in a message. For example, a file that is encoded in the
Postscript format always begins with the same pattern, or there may be a standardized
header or banner to an electronic funds transfer message, and so on. All these are
examples of known plaintext. With this knowledge, the analyst may be able to deduce
the key on the basis of the way in which the known plaintext is transformed.

Closely related to the known-plaintext attack is what might be referred to as a
probable-word attack. If the opponent is working with the encryption of some gen-
eral prose message, he or she may have little knowledge of what is in the message.
However, if the opponent is after some very specific information, then parts of the
message may be known. For example, if an entire accounting file is being transmit-
ted, the opponent may know the placement of certain key words in the header of the
file. As another example, the source code for a program developed by Corporation
X might include a copyright statement in some standardized position.

33

If the analyst is able somehow to get the source system to insert into the sys-
tem a message chosen by the analyst, then a chosen-plaintext attack is possible. An
example of this strategy is differential cryptanalysis, explored in Chapter 3. In general,
if the analyst is able to choose the messages to encrypt, the analyst may deliberately
pick patterns that can be expected to reveal the structure of the key.

Table 2.1 lists two other types of attack: chosen ciphertext and chosen text.
These are less commonly employed as cryptanalytic techniques but are nevertheless
possible avenues of attack.

Only relatively weak algorithms fail to withstand a ciphertext-only attack.
Generally, an encryption algorithm is designed to withstand a known-plaintext attack.

Two more definitions are worthy of note. An encryption scheme is uncondi-
tionally secure if the ciphertext generated by the scheme does not contain enough
information to determine uniquely the corresponding plaintext, no matter how
much ciphertext is available. That is, no matter how much time an opponent has, it
is impossible for him or her to decrypt the ciphertext simply because the required
information is not there. With the exception of a scheme known as the one-time pad
(described later in this chapter), there is no encryption algorithm that is uncondi-
tionally secure. Therefore, all that the users of an encryption algorithm can strive
for is an algorithm that meets one or both of the following criteria:

The cost of breaking the cipher exceeds the value of the encrypted information.

The time required to break the cipher exceeds the useful lifetime of the
information.

An encryption scheme is said to be computationally secure if either of the
foregoing two criteria are met. Unfortunately, it is very difficult to estimate the
amount of effort required to cryptanalyze ciphertext successfully.

All forms of cryptanalysis for symmetric encryption schemes are designed
to exploit the fact that traces of structure or pattern in the plaintext may survive
encryption and be discernible in the ciphertext. This will become clear as we exam-
ine various symmetric encryption schemes in this chapter. We will see in Part Two
that cryptanalysis for public-key schemes proceeds from a fundamentally different
premise, namely, that the mathematical properties of the pair of keys may make it
possible for one of the two keys to be deduced from the other.

A brute-force attack involves trying every possible key until an intelligible
translation of the ciphertext into plaintext is obtained. On average, half of all pos-
sible keys must be tried to achieve success. That is, if there are X different keys, on
average an attacker would discover the actual key after X/2 tries. It is important to
note that there is more to a brute-force attack than simply running through all pos-
sible keys. Unless known plaintext is provided, the analyst must be able to recognize
plaintext as plaintext. If the message is just plain text in English, then the result pops
out easily, although the task of recognizing English would have to be automated. If
the text message has been compressed before encryption, then recognition is more
difficult. And if the message is some more general type of data, such as a numeri-
cal file, and this has been compressed, the problem becomes even more difficult to
automate. Thus, to supplement the brute-force approach, some degree of knowl-
edge about the expected plaintext is needed, and some means of automatically
distinguishing plaintext from garble is also needed.

34 CHAPTER 2 / CLASSICAL ENCRYPTION TECHNIQUES

2.2 SUBSTITUTION TECHNIQUES

In this section and the next, we examine a sampling of what might be called classi-
cal encryption techniques. A study of these techniques enables us to illustrate the
basic approaches to symmetric encryption used today and the types of cryptanalytic
attacks that must be anticipated.

The two basic building blocks of all encryption techniques are substitution
and transposition. We examine these in the next two sections. Finally, we discuss a
system that combines both substitution and transposition.

A substitution technique is one in which the letters of plaintext are replaced by
other letters or by numbers or symbols." If the plaintext is viewed as a sequence of bits,
then substitution involves replacing plaintext bit patterns with ciphertext bit patterns.

Caesar Cipher

The earliest known, and the simplest, use of a substitution cipher was by Julius
Caesar. The Caesar cipher involves replacing each letter of the alphabet with the
letter standing three places further down the alphabet. For example,

plain: meet me after the toga party
cipher: PHHW PH DIWHU WKH WRJD SDUWB

Note that the alphabet is wrapped around, so that the letter following Z is A.
We can define the transformation by listing all possibilities, as follows:

plain: abcdefghijklmnopgrstuvwixyz
cipher: DEFGHIJKLMNOPQRSTUVWIXYZABC

Let us assign a numerical equivalent to each letter:

a b c d e f h i j k 1 m

g

0 1 2 3 4 5 6 7 8 9 10 11 12

n o P q r S t u \4 w X y V4

13 14 15 16 17 18 19 | 20 | 21 22 | 23 24 | 25

Then the algorithm can be expressed as follows. For each plaintext letter p, substi-
tute the ciphertext letter C:?

C=E@B,p) = (p + 3)mod 26

'When letters are involved, the following conventions are used in this book. Plaintext is always in lowercase;
ciphertext is in uppercase; key values are in italicized lowercase.

2We define a mod # to be the remainder when a is divided by n. For example, 11 mod 7 =4. See Chapter 4
for a further discussion of modular arithmetic.

35

A shift may be of any amount, so that the general Caesar algorithm is
C = E(k,p) = (p + k) mod 26 2.1
where k takes on a value in the range 1 to 25. The decryption algorithm is simply
p = D(k,C) = (C — k) mod 26 2.2)

If it is known that a given ciphertext is a Caesar cipher, then a brute-force
cryptanalysis is easily performed: simply try all the 25 possible keys. Figure 2.3
shows the results of applying this strategy to the example ciphertext. In this case, the
plaintext leaps out as occupying the third line.

Three important characteristics of this problem enabled us to use a brute-
force cryptanalysis:

The encryption and decryption algorithms are known.
There are only 25 keys to try.
The language of the plaintext is known and easily recognizable.

PHHW PH DIWHU WKH WRJD SDUWB
KEY

1 oggv og chvgt vjg vgic rctva
2 nffu nf bgufs uif uphb gbsuz
3 meet me after the toga party
4 1dds 1d zesdqg sgd snfz ozgsx
5 kccr kc ydrcp rfc rmey nyprw
6 jbbg jb xcgbo geb gldx mxogv
7 iaap ia wbpan pda pkcw lwnpu
8 hzzo hz vaozm ocz ojbv kvmot
9 gyyn gy uznyl nby niau julns
10 fxxm fx tymxk max mhzt itkmr
11 ewwl ew sxlwj lzw lgys hsjlag
12 dvvk dv rwkvi kyv kfxr grikp
13 cuuj cu gvjuh jxu jewqg fghjo
14 btti bt puitg iwt idvp epgin
15 assh as othsf hvs hcuo dofhm
16 zrrg zr nsgre gur gbtn cnegl
17 vaaf yg mrfgd ftg fasm bmdfk
18 Xppe Xp lgepc esp ezrl alcej
19 wood wo kpdob dro dygk zkbdi
20 vnnc vn jocna cgn cxpj yjach
21 ummb um inbmz bpm bwoi xizbg
22 tlla tl hmaly aol avnh whyaf
23 skkz sk glzkx znk zumg vgxze
24 rjjy rj fkyjw ymj ytlf ufwyd
25 giix gi ejxiv xli xske tevxc

Brute-Force Cryptanalysis of Caesar
Cipher

36

4R — Q-0)<4{eot, &~Q%rau-~f 07z-
Uz20#A20 e«g7 ,Qn-@3N0U @z’'Y-feol [+0_ &Q,<NO-+«"x& Agfeuld
x}68keA
_vi "AE] .m J/°iTé&1 'c<ufd-

AD(G WAC~y_i8AW PO1«IUtc],m; Il "= L 90gfl0~&EL -< @O§” :
YE!1SGgevo” U\ ,S>h<-*6p1%x " |fid#="my% " >fiP<, fi A A zu-
Q06 {%s ,QES i m+AL°102¢Sy O-

28fIRL /@""[IK22PER, 1é” 3276 0ZIY-YQrY> Q+ed/ <Kfe*+~ "<~
B ZoK~QRyif . 10flzsS/]1>EQ 1

Sample of Compressed Text

In most networking situations, we can assume that the algorithms are known.
What generally makes brute-force cryptanalysis impractical is the use of an algo-
rithm that employs a large number of keys. For example, the triple DES algorithm,
examined in Chapter 6, makes use of a 168-bit key, giving a key space of 2! or
greater than 3.7 X 10° possible keys.

The third characteristic is also significant. If the language of the plaintext
is unknown, then plaintext output may not be recognizable. Furthermore, the
input may be abbreviated or compressed in some fashion, again making recogni-
tion difficult. For example, Figure 2.4 shows a portion of a text file compressed
using an algorithm called ZIP. If this file is then encrypted with a simple sub-
stitution cipher (expanded to include more than just 26 alphabetic characters),
then the plaintext may not be recognized when it is uncovered in the brute-force
cryptanalysis.

With only 25 possible keys, the Caesar cipher is far from secure. A dramatic increase
in the key space can be achieved by allowing an arbitrary substitution. Before pro-
ceeding, we define the term permutation. A permutation of a finite set of elements S
is an ordered sequence of all the elements of S, with each element appearing exactly
once. For example, if S = {a, b, c}, there are six permutations of S:

abc, acb, bac, bca, cab, cba

In general, there are n! permutations of a set of n elements, because the first
element can be chosen in one of n ways, the second in n — 1 ways, the thirdinn — 2
ways, and so on.

Recall the assignment for the Caesar cipher:

plain: abcdefghijklmnopgrstuvwzxysz
cipher: DEFGHIJKLMNOPQRSTUVWIXYZABC

If, instead, the “cipher” line can be any permutation of the 26 alphabetic characters,
then there are 26! or greater than 4 X 10%° possible keys. This is 10 orders of mag-
nitude greater than the key space for DES and would seem to eliminate brute-force
techniques for cryptanalysis. Such an approach is referred to as a monoalphabetic
substitution cipher, because a single cipher alphabet (mapping from plain alphabet
to cipher alphabet) is used per message.

37

There is, however, another line of attack. If the cryptanalyst knows the nature
of the plaintext (e.g., noncompressed English text), then the analyst can exploit the
regularities of the language. To see how such a cryptanalysis might proceed, we give
a partial example here that is adapted from one in [SINKO09]. The ciphertext to be
solved is

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXATZ
VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ

As a first step, the relative frequency of the letters can be determined and
compared to a standard frequency distribution for English, such as is shown in
Figure 2.5 (based on [LEWAO00]). If the message were long enough, this technique
alone might be sufficient, but because this is a relatively short message, we cannot
expect an exact match. In any case, the relative frequencies of the letters in the
ciphertext (in percentages) are as follows:

P 1333 H 583 F 333 B 1.67 C 0.00
Z 11.67 D 5.00 W 333 G 1.67 K 0.00
S 833 E 5.00 Q 250 Y 1.67 L 0.00
U 833 vV 417 T 250 I 083 N 0.00
O 750 X 417 A 167 J 083 R 0.00
M 6.67

Comparing this breakdown with Figure 2.5, it seems likely that cipher letters P
and Z are the equivalents of plain letters e and t, but it is not certain which is which.
The letters S, U, O, M, and H are all of relatively high frequency and probably cor-
respond to plain letters from the set {a, h, i, n, o, 1, s}. The letters with the lowest
frequencies (namely, A, B, G, Y, 1, J) are likely included in the set {b, j, k, q, v, X, z}.

There are a number of ways to proceed at this point. We could make some ten-
tative assignments and start to fill in the plaintext to see if it looks like a reasonable
“skeleton” of a message. A more systematic approach is to look for other regularities.
For example, certain words may be known to be in the text. Or we could look for
repeating sequences of cipher letters and try to deduce their plaintext equivalents.

A powerful tool is to look at the frequency of two-letter combinations, known
as digrams. A table similar to Figure 2.5 could be drawn up showing the relative fre-
quency of digrams. The most common such digram is th. In our ciphertext, the most
common digram is ZW, which appears three times. So we make the correspondence
of Z with t and W with h. Then, by our earlier hypothesis, we can equate P with e.
Now notice that the sequence ZWP appears in the ciphertext, and we can translate
that sequence as “the.” This is the most frequent trigram (three-letter combination)
in English, which seems to indicate that we are on the right track.

Next, notice the sequence ZWSZ in the first line. We do not know that these
four letters form a complete word, but if they do, it is of the form th_t. If so, S
equates with a.

38 CHAPTER 2 / CLASSICAL ENCRYPTION TECHNIQUES

14 =
S
=
o
12
10 g
> <
s = =
5;9
= oo ~
2 8| © %
g N 2 =
& O G S
o S = Ne] SR
£ 2 i o
3 6 = i
=7
o
& &
< S
i <
4 =
S 3
~ o o~ =
S §2 <Or N ol g <
. S 3 X 8 53
2| = o - = -
H % S 5 = Y (I
= = = =}
= S NEE
0 = - m =
B C DEFGHT J KU LMNUOZPI QRS TUVWXYZ

A
Figure 2.5 Relative Frequency of Letters in English Text

So far, then, we have

UZQSOVUOHXMOPVGPOZPEVSGZWSZOPFPESXUDBMETSXATZ

t a e e te a that e e a a
VUEPHZHMDZSHZOWSFPAPPDTSVPQUZWYMXUZUHSX
e t ta t ha e ee a e th t a

EPYEPOPDZSZUFPOMBZWPFUPZHMDJUDTMOHMQ
e e e tat e the t

Only four letters have been identified, but already we have quite a bit of the
message. Continued analysis of frequencies plus trial and error should easily yield a
solution from this point. The complete plaintext, with spaces added between words,
follows:

it was disclosed yesterday that several informal but
direct contacts have been made with political
representatives of the viet cong in moscow

Monoalphabetic ciphers are easy to break because they reflect the frequency
data of the original alphabet. A countermeasure is to provide multiple substitutes,

39

known as homophones, for a single letter. For example, the letter e could be as-
signed a number of different cipher symbols, such as 16, 74, 35, and 21, with each
homophone assigned to a letter in rotation or randomly. If the number of symbols
assigned to each letter is proportional to the relative frequency of that letter, then
single-letter frequency information is completely obliterated. The great mathemati-
cian Carl Friedrich Gauss believed that he had devised an unbreakable cipher using
homophones. However, even with homophones, each element of plaintext affects
only one element of ciphertext, and multiple-letter patterns (e.g., digram frequen-
cies) still survive in the ciphertext, making cryptanalysis relatively straightforward.

Two principal methods are used in substitution ciphers to lessen the extent to
which the structure of the plaintext survives in the ciphertext: One approach is to
encrypt multiple letters of plaintext, and the other is to use multiple cipher alpha-
bets. We briefly examine each.

The best-known multiple-letter encryption cipher is the Playfair, which treats
digrams in the plaintext as single units and translates these units into ciphertext
digrams.3

The Playfair algorithm is based on the use of a 5 X 5 matrix of letters con-
structed using a keyword. Here is an example, solved by Lord Peter Wimsey in
Dorothy Sayers’s Have His Carcase:*

M|O|NJ|A|R
C|H|Y|B|D
E|F |G |IJ| K
L|{P|Q| S |T
U|V | W|X | Z

In this case, the keyword is monarchy. The matrix is constructed by filling
in the letters of the keyword (minus duplicates) from left to right and from top to
bottom, and then filling in the remainder of the matrix with the remaining letters in
alphabetic order. The letters I and J count as one letter. Plaintext is encrypted two
letters at a time, according to the following rules:

Repeating plaintext letters that are in the same pair are separated with a filler
letter, such as x, so that balloon would be treated as ba Ix lo on.

Two plaintext letters that fall in the same row of the matrix are each replaced
by the letter to the right, with the first element of the row circularly following
the last. For example, ar is encrypted as RM.

Two plaintext letters that fall in the same column are each replaced by the
letter beneath, with the top element of the column circularly following the last.
For example, mu is encrypted as CM.

3This cipher was actually invented by British scientist Sir Charles Wheatstone in 1854, but it bears the
name of his friend Baron Playfair of St. Andrews, who championed the cipher at the British foreign office.
“The book provides an absorbing account of a probable-word attack.

40

Otherwise, each plaintext letter in a pair is replaced by the letter that lies in
its own row and the column occupied by the other plaintext letter. Thus, hs
becomes BP and ea becomes IM (or JM, as the encipherer wishes).

The Playfair cipher is a great advance over simple monoalphabetic ciphers.
For one thing, whereas there are only 26 letters, there are 26 X 26 = 676 digrams, so
that identification of individual digrams is more difficult. Furthermore, the relative
frequencies of individual letters exhibit a much greater range than that of digrams,
making frequency analysis much more difficult. For these reasons, the Playfair
cipher was for a long time considered unbreakable. It was used as the standard field
system by the British Army in World War I and still enjoyed considerable use by the
U.S. Army and other Allied forces during World War II.

Despite this level of confidence in its security, the Playfair cipher is relatively
easy to break, because it still leaves much of the structure of the plaintext language
intact. A few hundred letters of ciphertext are generally sufficient.

One way of revealing the effectiveness of the Playfair and other ciphers
is shown in Figure 2.6. The line labeled plaintext plots a typical frequency
distribution of the 26 alphabetic characters (no distinction between upper
and lower case) in ordinary text. This is also the frequency distribution of any
monoalphabetic substitution cipher, because the frequency values for individual
letters are the same, just with different letters substituted for the original letters.
The plot is developed in the following way: The number of occurrences of each
letter in the text is counted and divided by the number of occurrences of
the most frequently used letter. Using the results of Figure 2.5, we see that
e is the most frequently used letter. As a result, e has a relative frequency of 1, t of

1.07

0.9 —

Plaintext
0.8 —

07 — Playfair

0.6 —

0.5 —

Se
~
.
~
~
~
~
~
~
~,
~
~

.
.
~.,
~ ~a,
..
~
.

0.4 —

~

Vignere

0.3 —

Normalized relative frequency

0.2 Random polyalphabetic

0.1

IIIIIIIIIIIIIIIIIIIIIIIII.1
1 23 45 6 1 7 8 9 10101213 14 1516 17 18 19 20 21 22 23 24 25 26

Frequency ranked letters (decreasing frequency)

Relative Frequency of Occurrence of Letters

41

9.056/12.702 = 0.72, and so on. The points on the horizontal axis correspond
to the letters in order of decreasing frequency.

Figure 2.6 also shows the frequency distribution that results when the text
is encrypted using the Playfair cipher. To normalize the plot, the number of
occurrences of each letter in the ciphertext was again divided by the number of
occurrences of e in the plaintext. The resulting plot therefore shows the extent
to which the frequency distribution of letters, which makes it trivial to solve
substitution ciphers, is masked by encryption. If the frequency distribution
information were totally concealed in the encryption process, the ciphertext plot
of frequencies would be flat, and cryptanalysis using ciphertext only would be
effectively impossible. As the figure shows, the Playfair cipher has a flatter dis-
tribution than does plaintext, but nevertheless, it reveals plenty of structure for
a cryptanalyst to work with. The plot also shows the Vigenere cipher, discussed
subsequently. The Hill and Vigenere curves on the plot are based on results
reported in [SIMMO93].

Another interesting multiletter cipher is the Hill cipher, developed by the math-
ematician Lester Hill in 1929.

Before describing the Hill cipher, let us briefly
review some terminology from linear algebra. In this discussion, we are concerned
with matrix arithmetic modulo 26. For the reader who needs a refresher on matrix
multiplication and inversion, see Appendix E.

We define the inverse M™! of a square matrix M by the equation
M(M ') = MM = I, where I is the identity matrix. I is a square matrix that is all
zeros except for ones along the main diagonal from upper left to lower right. The
inverse of a matrix does not always exist, but when it does, it satisfies the preceding
equation. For example,

(5 8 1 (9 2
A—(17 3) A m0d26—(1 15)

(5x9 +@8x1) (5><2)+(8><15))
(17 X9) + 3 x1) (17 x2) + (3 X 15)

53 130 1 0
N (156 79) mod 26 = (0 1>
To explain how the inverse of a matrix is computed, we begin with the concept

of determinant. For any square matrix (m X m), the determinant equals the sum of
all the products that can be formed by taking exactly one element from each row

AAT! = (

SThis cipher is somewhat more difficult to understand than the others in this chapter, but it illustrates an
important point about cryptanalysis that will be useful later on. This subsection can be skipped on a first
reading.

42

and exactly one element from each column, with certain of the product terms pre-
ceded by a minus sign. For a 2 X 2 matrix,

(kn k12>
ky kp
the determinant is ky1kyy — kpoky1. For a 3 X 3 matrix, the value of the determi-
nant is kykpkss + kaikskis + kaitkipkas — katkpkis — kaikiokss — kiikskas. If a
square matrix A has a nonzero determinant, then the inverse of the matrix is com-
puted as [Afl],-j = (det A)fl(—l)H’A(Dﬁ), where (Dj;) is the subdeterminant formed
by deleting the jth row and the ith column of A, det(A) is the determinant of A, and
(det A)~!is the multiplicative inverse of (det A) mod 26.

Continuing our example,

5 8
det<17 3) = (5%X3) — (8x17) = —121mod 26 = 9

We can show that 9 'mod 26 = 3, because 9 X 3 = 27mod 26 = 1 (see
Chapter 4 or Appendix E). Therefore, we compute the inverse of A as

5 8
A =
(5 3)
3 -8 3 18 9 54 9 2
wrmoazs =27)= V)=) =00)

me -17 5 9 5 27 15) " \1 15
This encryption algorithm takes m successive plaintext let-
ters and substitutes for them m ciphertext letters. The substitution is determined

by m linear equations in which each character is assigned a numerical value
(a =0,b =1,...,z = 25). For m = 3, the system can be described as

¢; = (kupy + kypy + ksips) mod 26
¢y = (kiapy + kypps + kspps) mod 26
c3 = (kiapy + kyps + kszps) mod 26

This can be expressed in terms of row vectors and matrices:’
kiy ki ks

(crc2¢3) = (p1 P2 P3)| ka1t koo kp3 [mod 26
k3 ko ks

or

C = PK mod 26

Some cryptography books express the plaintext and ciphertext as column vectors, so that the column
vector is placed after the matrix rather than the row vector placed before the matrix. Sage uses row vec-
tors, so we adopt that convention.

43

where C and P are row vectors of length 3 representing the plaintext and ciphertext,
and K is a 3 X 3 matrix representing the encryption key. Operations are performed
mod 26.

For example, consider the plaintext “paymoremoney” and use the encryp-
tion key

17 17 5
K=121 18 21
2 2 19

The first three letters of the plaintext are represented by the vector (150 24).
Then(15 024)K = (303 303 531) mod 26 = (17 17 11) = RRL. Continuing in this
fashion, the ciphertext for the entire plaintext is RRLMWBKASPDH.

Decryption requires using the inverse of the matrix K. We can compute
det K = 23, and therefore, (det K) 'mod 26 = 17. We can then compute the
inverse as’

4 9 15
K'=[15 17 6
24 0 17
This is demonstrated as
17 17 5 4 9 15 443 442 442 1 0 O
21 18 21 15 17 6 | =1858 495 780 mod26=|0 1 O
2 2 19/\24 0 17 494 52 365 0 0 1

It is easily seen that if the matrix K ! is applied to the ciphertext, then the
plaintext is recovered.
In general terms, the Hill system can be expressed as

C = E(K, P) = PKmod 26
P=D(K,C) = CK 'mod26 = PKK ! =

As with Playfair, the strength of the Hill cipher is that it completely hides
single-letter frequencies. Indeed, with Hill, the use of a larger matrix hides more
frequency information. Thus, a 3 X 3 Hill cipher hides not only single-letter but
also two-letter frequency information.

Although the Hill cipher is strong against a ciphertext-only attack, it is
easily broken with a known plaintext attack. For an m X m Hill cipher, sup-
pose we have m plaintext—ciphertext pairs, each of length m. We label the pairs
P, = (pi;pyj ... pmp) and C; = (cy; ¢yj... ¢,yy) such that C; = PK for 1 = j = m and
for some unknown key matrix K. Now define two m X m matrices X = (p;) and
Y = (¢;). Then we can form the matrix equation Y = XK. If X has an inverse, then
we can determine K = X 'Y. If X is not invertible, then a new version of X can be
formed with additional plaintext—ciphertext pairs until an invertible X is obtained.

"The calculations for this example are provided in detail in Appendix E.

44

Consider this example. Suppose that the plaintext “hillcipher” is encrypted
using a 2 X 2 Hill cipher to yield the ciphertext HCRZSSXNSP. Thus, we know
that (7 8)Kmod26 = (7 2); (11 11)Kmod26 = (17 25); and so on. Using
the first two plaintext—ciphertext pairs, we have

7 2 7 8
(17 25>_<11 11)Km0d26

The inverse of X can be computed:
(7 8)1 B (25 22)
m 1) \1 23

25 2\7 2 549 600 3 2
K_(1 23)(17 25>_(398 577)m0d26_<8 5)

This result is verified by testing the remaining plaintext—ciphertext pairs.

SO

Another way to improve on the simple monoalphabetic technique is to use differ-
ent monoalphabetic substitutions as one proceeds through the plaintext message.
The general name for this approach is polyalphabetic substitution cipher. All these
techniques have the following features in common:

A set of related monoalphabetic substitution rules is used.

A key determines which particular rule is chosen for a given transformation.

The best known, and one of the simplest, polyalphabetic ciphers
is the Vigenere cipher. In this scheme, the set of related monoalphabetic substitu-
tion rules consists of the 26 Caesar ciphers with shifts of 0 through 25. Each cipher is
denoted by a key letter, which is the ciphertext letter that substitutes for the plaintext
letter a. Thus, a Caesar cipher with a shift of 3 is denoted by the key value 3.3

We can express the Vigenere cipher in the following manner. Assume a

sequence of plaintext letters P = py, p1, P», - - . » Po—1 and a key consisting of the
sequence of letters K = ky, ki, ky, . . ., k,,—1, Wwhere typically m <n. The sequence of
ciphertext letters C = Cy, Cy, Cy, . .., C,_ is calculated as follows:

C= CO? Cl’ C27] Cnfl = E(Kv P) = E[(kO, klv k2’ sy kmfl)’ (Poa P, P2 - - ,pnfl)]
= (py + ko)mod 26, (p; + k)mod 26,. .., (p,—1 + k,—1)mod 26,
(P + ko)mod 26, (p,,+1 + k)mod 26,. .., (pyn-1 + ky,—1)mod 26,. ..

Thus, the first letter of the key is added to the first letter of the plaintext, mod 26,
the second letters are added, and so on through the first m letters of the plaintext.
For the next m letters of the plaintext, the key letters are repeated. This process

8T0 aid in understanding this scheme and also to aid in it use, a matrix known as the Vigenere tableau is

often used. This tableau is discussed in a document in the Premium Content Web site for this book.

45

continues until all of the plaintext sequence is encrypted. A general equation of the
encryption process is

C; = (p; + kimod m) mod 26 2.3)

Compare this with Equation (2.1) for the Caesar cipher. In essence, each
plaintext character is encrypted with a different Caesar cipher, depending on
the corresponding key character. Similarly, decryption is a generalization of
Equation (2.2):

pi = (Ci = kimoa m) mod 26 24

To encrypt a message, a key is needed that is as long as the message. Usually,
the key is a repeating keyword. For example, if the keyword is deceptive, the
message “we are discovered save yourself” is encrypted as

key: deceptivedeceptivedeceptive
plaintext: wearediscoveredsaveyourself
ciphertext: ZICVTWONGRZGVTWAVZHCQYGLMGJ

Expressed numerically, we have the following result.

key 3 4 2 4 115)119| 8 |21 | 4 3 4 2 4 |15
plaintext 22 | 4 0 (17| 4 3 8§ |18 | 2 |14 21| 4 |17]| 4
ciphertext | 25 | 8 2 121 (19|22 |16 |13 |6 [17]|25] 6 |21 |19

key 19 8 21| 4 3 4 2 4 115119 8 |21
plaintext 31181 0|21 4 |24|14 |20 |17 |18 4 |11]| 5
ciphertext | 22 | 0 |21 |25 | 7 2 116 |24 6 |11 |12 | 6

The strength of this cipher is that there are multiple ciphertext letters for
each plaintext letter, one for each unique letter of the keyword. Thus, the letter
frequency information is obscured. However, not all knowledge of the plaintext
structure is lost. For example, Figure 2.6 shows the frequency distribution for a
Vigenere cipher with a keyword of length 9. An improvement is achieved over the
Playfair cipher, but considerable frequency information remains.

It is instructive to sketch a method of breaking this cipher, because the method
reveals some of the mathematical principles that apply in cryptanalysis.

First, suppose that the opponent believes that the ciphertext was encrypted
using either monoalphabetic substitution or a Vigenere cipher. A simple test can
be made to make a determination. If a monoalphabetic substitution is used, then
the statistical properties of the ciphertext should be the same as that of the lan-
guage of the plaintext. Thus, referring to Figure 2.5, there should be one cipher
letter with a relative frequency of occurrence of about 12.7%, one with about
9.06%, and so on. If only a single message is available for analysis, we would
not expect an exact match of this small sample with the statistical profile of the
plaintext language. Nevertheless, if the correspondence is close, we can assume a
monoalphabetic substitution.

46

If, on the other hand, a Vigenere cipher is suspected, then progress depends
on determining the length of the keyword, as will be seen in a moment. For now, let
us concentrate on how the keyword length can be determined. The important in-
sight that leads to a solution is the following: If two identical sequences of plaintext
letters occur at a distance that is an integer multiple of the keyword length, they will
generate identical ciphertext sequences. In the foregoing example, two instances
of the sequence “red” are separated by nine character positions. Consequently, in
both cases, r is encrypted using key letter e, e is encrypted using key letter p, and d
is encrypted using key letter ¢. Thus, in both cases, the ciphertext sequence is VIW.
We indicate this above by underlining the relevant ciphertext letters and shading
the relevant ciphertext numbers.

An analyst looking at only the ciphertext would detect the repeated sequences
VTW at a displacement of 9 and make the assumption that the keyword is either three
or nine letters in length. The appearance of VI'W twice could be by chance and may
not reflect identical plaintext letters encrypted with identical key letters. However,
if the message is long enough, there will be a number of such repeated ciphertext
sequences. By looking for common factors in the displacements of the various
sequences, the analyst should be able to make a good guess of the keyword length.

Solution of the cipher now depends on an important insight. If the keyword
length is m, then the cipher, in effect, consists of m monoalphabetic substitution
ciphers. For example, with the keyword DECEPTIVE, the letters in positions 1, 10,
19, and so on are all encrypted with the same monoalphabetic cipher. Thus, we can
use the known frequency characteristics of the plaintext language to attack each of
the monoalphabetic ciphers separately.

The periodic nature of the keyword can be eliminated by using a nonrepeating
keyword that is as long as the message itself. Vigenere proposed what is referred to
as an autokey system, in which a keyword is concatenated with the plaintext itself to
provide a running key. For our example,

key: deceptivewearediscoveredsav
plaintext: wearediscoveredsaveyourself
ciphertext: ZICVTWONGKZEIIGASXSTSLVVWLA

Even this scheme is vulnerable to cryptanalysis. Because the key and the
plaintext share the same frequency distribution of letters, a statistical technique
can be applied. For example, e enciphered by e, by Figure 2.5, can be expected to
occur with a frequency of (0.127)> = 0.016, whereas t enciphered by ¢ would occur
only about half as often. These regularities can be exploited to achieve successful
cryptanalysis.”

The ultimate defense against such a cryptanalysis is to choose a
keyword that is as long as the plaintext and has no statistical relationship to it. Such
a system was introduced by an AT&T engineer named Gilbert Vernam in 1918.

9Although the techniques for breaking a Vigenére cipher are by no means complex, a 1917 issue of

Scientific American characterized this system as “impossible of translation.” This is a point worth remem-
bering when similar claims are made for modern algorithms.

47

Key stream Key stream
generator generator
Cryptographic Cryptographic
bit stream (k;) bit stream (k;)
Plaintext Ciphertext Plaintext
(p;) (¢;) @ (pi)
Vernam Cipher

His system works on binary data (bits) rather than letters. The system can be
expressed succinctly as follows (Figure 2.7):

¢ = piDKk;
where

p; = ith binary digit of plaintext

k; = ith binary digit of key

¢; = ith binary digit of ciphertext
@ = exclusive-or (XOR) operation

Compare this with Equation (2.3) for the Vigenere cipher.

Thus, the ciphertext is generated by performing the bitwise XOR of the plain-
text and the key. Because of the properties of the XOR, decryption simply involves
the same bitwise operation:

pi =@k

which compares with Equation (2.4).

The essence of this technique is the means of construction of the key. Vernam
proposed the use of a running loop of tape that eventually repeated the key, so
that in fact the system worked with a very long but repeating keyword. Although
such a scheme, with a long key, presents formidable cryptanalytic difficulties, it
can be broken with sufficient ciphertext, the use of known or probable plaintext
sequences, or both.

An Army Signal Corp officer, Joseph Mauborgne, proposed an improvement to the
Vernam cipher that yields the ultimate in security. Mauborgne suggested using a
random key that is as long as the message, so that the key need not be repeated. In
addition, the key is to be used to encrypt and decrypt a single message, and then is
discarded. Each new message requires a new key of the same length as the new mes-
sage. Such a scheme, known as a one-time pad, is unbreakable. It produces random
output that bears no statistical relationship to the plaintext. Because the ciphertext
contains no information whatsoever about the plaintext, there is simply no way to
break the code.

48

An example should illustrate our point. Suppose that we are using a
Vigenere scheme with 27 characters in which the twenty-seventh character is the
space character, but with a one-time key that is as long as the message. Consider
the ciphertext

ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
We now show two different decryptions using two different keys:

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
key: pxlmvmsydofuyrvzwc tnlebnecvgdupahfzzlmnyih
plaintext: mr mustard with the candlestick in the hall

ciphertext: ANKYODKYUREPFJBYOJDSPLREYIUNOFDOIUERFPLUYTS
key: pftgpmiydgaxgoufhklllmhsgdgogtewbgfgyovuhwt
plaintext: miss scarlet with the knife in the library

Suppose that a cryptanalyst had managed to find these two keys. Two plau-
sible plaintexts are produced. How is the cryptanalyst to decide which is the correct
decryption (i.e., which is the correct key)? If the actual key were produced in a truly
random fashion, then the cryptanalyst cannot say that one of these two keys is more
likely than the other. Thus, there is no way to decide which key is correct and there-
fore which plaintext is correct.

In fact, given any plaintext of equal length to the ciphertext, there is a key that
produces that plaintext. Therefore, if you did an exhaustive search of all possible
keys, you would end up with many legible plaintexts, with no way of knowing which
was the intended plaintext. Therefore, the code is unbreakable.

The security of the one-time pad is entirely due to the randomness of
the key. If the stream of characters that constitute the key is truly random, then the
stream of characters that constitute the ciphertext will be truly random. Thus, there
are no patterns or regularities that a cryptanalyst can use to attack the ciphertext.

In theory, we need look no further for a cipher. The one-time pad offers com-
plete security but, in practice, has two fundamental difficulties:

There is the practical problem of making large quantities of random keys.
Any heavily used system might require millions of random characters
on a regular basis. Supplying truly random characters in this volume is a
significant task.

Even more daunting is the problem of key distribution and protection. For
every message to be sent, a key of equal length is needed by both sender and
receiver. Thus, a mammoth key distribution problem exists.

Because of these difficulties, the one-time pad is of limited utility and is useful
primarily for low-bandwidth channels requiring very high security.

The one-time pad is the only cryptosystem that exhibits what is referred to as
perfect secrecy. This concept is explored in Appendix F.

2.3 / TRANSPOSITION TECHNIQUES 49

2.3 TRANSPOSITION TECHNIQUES

All the techniques examined so far involve the substitution of a ciphertext symbol
for a plaintext symbol. A very different kind of mapping is achieved by performing
some sort of permutation on the plaintext letters. This technique is referred to as a
transposition cipher.

The simplest such cipher is the rail fence technique, in which the plaintext is
written down as a sequence of diagonals and then read off as a sequence of rows.
For example, to encipher the message “meet me after the toga party” with a rail
fence of depth 2, we write the following:

mematrhtgpry
etefeteoaat

The encrypted message is
MEMATRHTGPRYETEFETEOAAT

This sort of thing would be trivial to cryptanalyze. A more complex scheme is
to write the message in a rectangle, row by row, and read the message off, column
by column, but permute the order of the columns. The order of the columns then
becomes the key to the algorithm. For example,

Key: 4312567
Plaintext: attackp
Os tpone
duntilt
wWoamzxy z
Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ

Thus, in this example, the key is 4312567. To encrypt, start with the column
that is labeled 1, in this case column 3. Write down all the letters in that column.
Proceed to column 4, which is labeled 2, then column 2, then column 1, then
columns 5, 6, and 7.

A pure transposition cipher is easily recognized because it has the same letter
frequencies as the original plaintext. For the type of columnar transposition just
shown, cryptanalysis is fairly straightforward and involves laying out the cipher-
text in a matrix and playing around with column positions. Digram and trigram
frequency tables can be useful.

The transposition cipher can be made significantly more secure by perform-
ing more than one stage of transposition. The result is a more complex permutation
that is not easily reconstructed. Thus, if the foregoing message is reencrypted using
the same algorithm,

50 CHAPTER 2 / CLASSICAL ENCRYPTION TECHNIQUES

Key: 4 3125¢67
Input: ttnaapt
mt s uoao
dwcoilzxk
nlypetaz
Output: NSCYAUOPTTWLTMDNAOIEPAXTTOKZ

To visualize the result of this double transposition, designate the letters in the
original plaintext message by the numbers designating their position. Thus, with 28
letters in the message, the original sequence of letters is

01 02 03 04 05 06
15 16 17 18 19 20

After the first transposition, we have

03 10 17 24 04 11
15 22 05 12 19 26

07 08
21 22

18 25
06 13

09 10 11
23 24 25

02 09 16
20 27 07

12
26

23
14

13 14
27 28

01 08
21 28

which has a somewhat regular structure. But after the second transposition, we have

17 09 05 27 24 16 12 07 10 02 22 20 03 25
15 13 04 23 19 14 11 01 26 21 18 08 06 28

This is a much less structured permutation and is much more difficult to cryptanalyze.

2.4 ROTOR MACHINES

The example just given suggests that multiple stages of encryption can produce an
algorithm that is significantly more difficult to cryptanalyze. This is as true of substi-
tution ciphers as it is of transposition ciphers. Before the introduction of DES, the
most important application of the principle of multiple stages of encryption was a

class of systems known as rotor machines.

10

The basic principle of the rotor machine is illustrated in Figure 2.8. The ma-
chine consists of a set of independently rotating cylinders through which electrical
pulses can flow. Each cylinder has 26 input pins and 26 output pins, with internal
wiring that connects each input pin to a unique output pin. For simplicity, only three
of the internal connections in each cylinder are shown.

If we associate each input and output pin with a letter of the alphabet, then a
single cylinder defines a monoalphabetic substitution. For example, in Figure 2.8,
if an operator depresses the key for the letter A, an electric signal is applied to

1%Machines based on the rotor principle were used by both Germany (Enigma) and Japan (Purple) in
World War II. The breaking of both codes by the Allies was a significant factor in the war’s outcome.

1S

Direction of motion

Yy

N<XHE<LCTu IO IVOZECN R T QTmIQ® >

24— 21 26 20 1 8
25—~ 3 1 1 2 —18
26 15 2 6| |3 26
1 1 3 4 |4 17
2 19| |4 15 5 4—20
3 10| |5 3 6 22
4 14| |6 14| |7 10
5 NA-26] [7 — 12 8 3
6 20| |8 23 9 13
7 8| |9 5 10 11
8 16 10 16 11 4
9 7 11 2 12 23
10 22 12 122 13— 5

4 13 19 14 24
12 11 14 11 15 9
13 5 15 18 16 12
14 17 16 25 17 25
15 9| |17 L24| |18 16
16 12 18 13 19 19
17 23 19 7 20~/ 6
18 18] |20 10| |21 15
19 2| |21 8| |22 21
20 25 22~/ 21 23 2
21 6| |23 9| |24 7
22 ~—24 24 26 25 1
23 13 25 17| |26 14
Fast rotor Medium rotor Slow rotor

(a) Initial setting

Y
A

N<XXE<LCOHuIOWOZEr-Aaw I QTmmUA®»>

Y

NH”YE<LCHu IO UVOZErNRa T QmmouQ®m»>

Direction of motion

23— 13 26 ,—20 1 — 8
24 21 1 1 2 18
25—\ 3 2 6 3 26
26 15 3 4 14 17
1 1 4 15 5 20
2 19 5 3 6 22
3 10 6 14 7 10
4 14 7 12 8 3
5 26 8 | —23 9 13
6 20 9 5 10 11
7 8 10 16 11 4
8 16 11 2 12 23
9 7 12 22 13 5
10 22 13 19 14 24
11 4 14 11 15 — 9
12 11 15 18 16 12
13 5 16 ~25 17~ 25
14 17 17 24 18 16
15 9 18 13 19 19
16 12 19 7 20 6
17 23 20~/ 10 21 15
18 18 21 8 22 21
19 2 22 21 23 2
20 | N—25 23—/ 9 24 7
21 6 24 26 25 1
2 ~—2u| |[25— 17 26 14
Fast rotor Medium rotor Slow rotor

(b) Setting after one keystroke

Figure 2.8 Three-Rotor Machine with Wiring Represented by Numbered Contacts

NXXE<LCOHuIOTOZEr A~ IQmmUA®»>

\

\

Y

52 CHAPTER 2 / CLASSICAL ENCRYPTION TECHNIQUES

the first pin of the first cylinder and flows through the internal connection to the
twenty-fifth output pin.

Consider a machine with a single cylinder. After each input key is depressed,
the cylinder rotates one position, so that the internal connections are shifted
accordingly. Thus, a different monoalphabetic substitution cipher is defined. After
26 letters of plaintext, the cylinder would be back to the initial position. Thus, we
have a polyalphabetic substitution algorithm with a period of 26.

A single-cylinder system is trivial and does not present a formidable cryptana-
lytic task. The power of the rotor machine is in the use of multiple cylinders, in which
the output pins of one cylinder are connected to the input pins of the next. Figure 2.8
shows a three-cylinder system. The left half of the figure shows a position in which
the input from the operator to the first pin (plaintext letter a) is routed through the
three cylinders to appear at the output of the second pin (ciphertext letter B).

With multiple cylinders, the one closest to the operator input rotates one
pin position with each keystroke. The right half of Figure 2.8 shows the system’s
configuration after a single keystroke. For every complete rotation of the inner
cylinder, the middle cylinder rotates one pin position. Finally, for every complete
rotation of the middle cylinder, the outer cylinder rotates one pin position. This
is the same type of operation seen with an odometer. The result is that there are
26 X 26 X 26 = 17,576 different substitution alphabets used before the system
repeats. The addition of fourth and fifth rotors results in periods of 456,976 and
11,881,376 letters, respectively. Thus, a given setting of a 5-rotor machine is equiva-
lent to a Vigenere cipher with a key length of 11,881,376.

Such a scheme presents a formidable cryptanalytic challenge. If, for example,
the cryptanalyst attempts to use a letter frequency analysis approach, the analyst
is faced with the equivalent of over 11 million monoalphabetic ciphers. We might
need on the order of 50 letters in each monalphabetic cipher for a solution, which
means that the analyst would need to be in possession of a ciphertext with a length
of over half a billion letters.

The significance of the rotor machine today is that it points the way to the
most widely used cipher ever: the Data Encryption Standard (DES), which is intro-
duced in Chapter 3.

2.5 STEGANOGRAPHY

We conclude with a discussion of a technique that (strictly speaking), is not encryp-
tion, namely, steganography.

A plaintext message may be hidden in one of two ways. The methods of
steganography conceal the existence of the message, whereas the methods of
cryptography render the message unintelligible to outsiders by various transfor-
mations of the text.!!

USteganography was an obsolete word that was revived by David Kahn and given the meaning it has
today [KAHNO96].

53

3rd March
Dear George,

Greetrings 4o all a+ Oxford. Many *hanks for your
(etrer and for +he Summer examination package.
All Entry Forms and Fees Forms should pe ready
for final despatch +o +he Syndicate by Friday
20%h or a+ the very latest, I'™ rold. by the 21s+.
Adwmin has improved herey, though +here's room
for improvement still; just give us all ¥wo or +hree
more years and we'll really show you! Please
don't let these wretched 16% proposals destroy
your pasic O and A patrtern. Cerrainly +his

sor} of change, if implemented imwediately,
would bring chaos.

Sincerely yours.

A Puzzle for Inspector Morse
(From The Silent World of Nicholas Quinn, by Colin Dexter)

A simple form of steganography, but one that is time-consuming to con-
struct, is one in which an arrangement of words or letters within an appar-
ently innocuous text spells out the real message. For example, the sequence of
first letters of each word of the overall message spells out the hidden message.
Figure 2.9 shows an example in which a subset of the words of the overall mes-
sage is used to convey the hidden message. See if you can decipher this; it’s not
too hard.

Various other techniques have been used historically; some examples are the
following [MYERO91]:

Character marking: Selected letters of printed or typewritten text are over-
written in pencil. The marks are ordinarily not visible unless the paper is held
at an angle to bright light.

Invisible ink: A number of substances can be used for writing but leave no
visible trace until heat or some chemical is applied to the paper.

Pin punctures: Small pin punctures on selected letters are ordinarily not
visible unless the paper is held up in front of a light.

Typewriter correction ribbon: Used between lines typed with a black
ribbon, the results of typing with the correction tape are visible only under
a strong light.

54

Although these techniques may seem archaic, they have contemporary equiv-
alents. [WAYNO9] proposes hiding a message by using the least significant bits of
frames on a CD. For example, the Kodak Photo CD format’s maximum resolution
is 3096 X 6144 pixels, with each pixel containing 24 bits of RGB color information.
The least significant bit of each 24-bit pixel can be changed without greatly affecting
the quality of the image. The result is that you can hide a 130-kB message in a single
digital snapshot. There are now a number of software packages available that take
this type of approach to steganography.

Steganography has a number of drawbacks when compared to encryption.
It requires a lot of overhead to hide a relatively few bits of information, although
using a scheme like that proposed in the preceding paragraph may make it more
effective. Also, once the system is discovered, it becomes virtually worthless. This
problem, too, can be overcome if the insertion method depends on some sort of key
(e.g., see Problem 2.20). Alternatively, a message can be first encrypted and then
hidden using steganography.

The advantage of steganography is that it can be employed by parties who
have something to lose should the fact of their secret communication (not necessar-
ily the content) be discovered. Encryption flags traffic as important or secret or may
identify the sender or receiver as someone with something to hide.

For anyone interested in the history of code making and code breaking, the book to read is
[KAHNO96]. Although it is concerned more with the impact of cryptology than its technical
development, it is an excellent introduction and makes for exciting reading. Another excel-
lent historical account is [SING99].

A short treatment covering the techniques of this chapter, and more, is [GARD72].
There are many books that cover classical cryptography in a more technical vein; one of the
best is [SINK09]. [KORNY96] is a delightful book to read and contains a lengthy section on
classical techniques. Two cryptography books that contain a fair amount of technical mate-
rial on classical techniques are [GARRO01] and [NICH99]. For the truly interested reader,
the two-volume [NICH96] covers numerous classical ciphers in detail and provides many
ciphertexts to be cryptanalyzed, together with the solutions.

An excellent treatment of rotor machines, including a discussion of their cryptanalysis
is found in [KUMAY97].

[KATZO00] provides a thorough treatment of steganography. Another good source is
[WAYNO9].

GARD72 Gardner, M. Codes, Ciphers, and Secret Writing. New York: Dover, 1972.

GARRO1 Garrett, P. Making, Breaking Codes: An Introduction to Cryptology. Upper
Saddle River, NJ: Prentice Hall, 2001.

KAHNY96 Kahn, D. The Codebreakers: The Story of Secret Writing. New York:
Scribner, 1996.

KATZ00 Katzenbeisser, S., ed. Information Hiding Techniques for Steganography and
Digital Watermarking. Boston: Artech House, 2000.

55

KORNY6 Korner, T. The Pleasures of Counting. Cambridge, England: Cambridge
University Press, 1996.

KUMAY97 Kumar, I. Cryptology. Laguna Hills, CA: Aegean Park Press, 1997.

NICH96 Nichols, R. Classical Cryptography Course. Laguna Hills, CA: Aegean Park
Press, 1996.

NICHY9 Nichols, R., ed. ICSA Guide to Cryptography. New York: McGraw-Hill, 1999.

SINGY99 Singh, S. The Code Book: The Science of Secrecy from Ancient Egypt to
Quantum Cryptography. New York: Anchor Books, 1999.

SINKO09 Sinkov, A., and Feil, T. Elementary Cryptanalysis: A Mathematical Approach.
Washington, D.C.: The Mathematical Association of America, 2009.

WAYNO09 Wayner, P. Disappearing Cryptography. Boston: AP Professional Books,
2009.

block cipher cryptology Playfair cipher
brute-force attack deciphering polyalphabetic cipher
Caesar cipher decryption rail fence cipher
cipher digram single-key encryption
ciphertext enciphering steganography
computationally secure encryption stream cipher
conventional encryption Hill cipher symmetric encryption
cryptanalysis monoalphabetic cipher transposition cipher
cryptographic system one-time pad unconditionally secure
cryptography plaintext Vigenere cipher

What are the essential ingredients of a symmetric cipher?

What are the two basic functions used in encryption algorithms?

How many keys are required for two people to communicate via a cipher?
What is the difference between a block cipher and a stream cipher?

What are the two general approaches to attacking a cipher?

List and briefly define types of cryptanalytic attacks based on what is known to the

attacker.

What is the difference between an unconditionally secure cipher and a computation-
ally secure cipher?

Briefly define the Caesar cipher.

Briefly define the monoalphabetic cipher.

Briefly define the Playfair cipher.

56

What is the difference between a monoalphabetic cipher and a polyalphabetic cipher?
What are two problems with the one-time pad?

What is a transposition cipher?

What is steganography?

A generalization of the Caesar cipher, known as the affine Caesar cipher, has the
following form: For each plaintext letter p, substitute the ciphertext letter C:

C = E([a, b],p) = (ap + b) mod 26

A basic requirement of any encryption algorithm is that it be one-to-one. That is, if
p # q,then E(k, p) # E(k, q). Otherwise, decryption is impossible, because more
than one plaintext character maps into the same ciphertext character. The affine
Caesar cipher is not one-to-one for all values of a. For example, fora = 2 and b = 3,
then E([a, b],0) = E([a, b], 13) = 3.

Are there any limitations on the value of b? Explain why or why not.

Determine which values of a are not allowed.

Provide a general statement of which values of a are and are not allowed. Justify

your statement.
How many one-to-one affine Caesar ciphers are there?
A ciphertext has been generated with an affine cipher. The most frequent letter of
the ciphertext is “B,” and the second most frequent letter of the ciphertext is “U.”
Break this code.
The following ciphertext was generated using a simple substitution algorithm.

53++1305))6*%;4826)4%.)4%);806%;481t8960))85;;]18%*;:+*8183
(88)5*t;46(;88*96*?;8)*%(;485) ;5*t2:*%%+ (;4956*2 (5*—4)89Y8*
;4069285) ;)618)4++;1(+9,;48081;8:8%+1;48185;4)4851t528806*81
($9;48; (88;4(+?34;48)4+;161;:188;%7?;

Decrypt this message.
Hints:
As you know, the most frequently occurring letter in English is e. Therefore, the
first or second (or perhaps third?) most common character in the message is likely
to stand for e. Also, e is often seen in pairs (e.g., meet, fleet, speed, seen, been,
agree, etc.). Try to find a character in the ciphertext that decodes to e.
The most common word in English is “the.” Use this fact to guess the characters
that stand for t and h.
Decipher the rest of the message by deducing additional words.
Warning: The resulting message is in English but may not make much sense on a first
reading.
One way to solve the key distribution problem is to use a line from a book that both
the sender and the receiver possess. Typically, at least in spy novels, the first sen-
tence of a book serves as the key. The particular scheme discussed in this problem is
from one of the best suspense novels involving secret codes, Talking to Strange Men,
by Ruth Rendell. Work this problem without consulting that book!

Consider the following message:

SIDKHKDM AF HCRKIABIE SHIMC KD LFEAILA

57

This ciphertext was produced using the first sentence of The Other Side of Silence (a
book about the spy Kim Philby):

The snow lay thick on the steps and the snowflakes driven by the wind
looked black in the headlights of the cars.

A simple substitution cipher was used.
What is the encryption algorithm?
How secure is it?
To make the key distribution problem simple, both parties can agree to use the
first or last sentence of a book as the key. To change the key, they simply need to
agree on a new book. The use of the first sentence would be preferable to the use
of the last. Why?

In one of his cases, Sherlock Holmes was confronted with the following message.

534 C21312736314172141
DOUGLAS 109 293 5 37 BIRLSTONE
26 BIRLSTONE 9 127 171

Although Watson was puzzled, Holmes was able immediately to deduce the type of
cipher. Can you?
This problem uses a real-world example, from an old U.S. Special Forces manual
(public domain). The document, filename SpecialForces.pdf, is available at the
Premium Content site for this book.
Using the two keys (memory words) cryptographic and network security, encrypt
the following message:

Be at the third pillar from the left outside the lyceum theatre tonight at seven.
If you are distrustful bring two friends.

Make reasonable assumptions about how to treat redundant letters and excess
letters in the memory words and how to treat spaces and punctuation. Indicate
what your assumptions are. Note: The message is from the Sherlock Holmes novel,
The Sign of Four.
Decrypt the ciphertext. Show your work.
Comment on when it would be appropriate to use this technique and what its
advantages are.
A disadvantage of the general monoalphabetic cipher is that both sender and receiver
must commit the permuted cipher sequence to memory. A common technique for
avoiding this is to use a keyword from which the cipher sequence can be generated.
For example, using the keyword CIPHER, write out the keyword followed by unused
letters in normal order and match this against the plaintext letters:

plain: abcdefghijklmnopgrstuvwsxyz
cipher: CI PHERABDFGJIJKLMNOQSTUVWIXYZ

If it is felt that this process does not produce sufficient mixing, write the remaining
letters on successive lines and then generate the sequence by reading down the
columns:

CIPHER
ABDFGJ
KLMNORQ
STUVWX
Y Z

58

This yields the sequence:
CAKSYIBLTZPDMUHFNVEGOWRUJIQOQX

Such a system is used in the example in Section 2.2 (the one that begins “it was dis-
closed yesterday”). Determine the keyword.

When the PT-109 American patrol boat, under the command of Lieutenant John F.
Kennedy, was sunk by a Japanese destroyer, a message was received at an Australian
wireless station in Playfair code:

KXJEY UREBE ZWEHE WRYTU HEYFS
KREHE GOYFI WTTTU OLKSY CAJPO
BOTEI ZONTX BYBNT GONEY CUZWR
GDSON SXBOU YWRHE BAAHY USEDQ

The key used was royal new zealand navy. Decrypt the message. Translate TT into tt.
Construct a Playfair matrix with the key largest.
Construct a Playfair matrix with the key occurrence. Make a reasonable assump-
tion about how to treat redundant letters in the key.
Using this Playfair matrix:

M F H 177 K
18] N O P Q
z \'% w X Y
E L A R G
D S T B C

Encrypt this message:
Must see you over Cadogan West. Coming at once.

Note: The message is from the Sherlock Holmes story, The Adventure of the Bruce-
Partington Plans.
Repeat part (a) using the Playfair matrix from Problem 2.10a.
How do you account for the results of this problem? Can you generalize your
conclusion?
How many possible keys does the Playfair cipher have? Ignore the fact that some
keys might produce identical encryption results. Express your answer as an ap-
proximate power of 2.
Now take into account the fact that some Playfair keys produce the same encryp-
tion results. How many effectively unique keys does the Playfair cipher have?

What substitution system results when we use a 25 X 1 Playfair matrix?
Encrypt the message “meet me at the usual place at ten rather than eight oclock”

9
using the Hill cipher with the key (5 . Show your calculations and the result.

7
Show the calculations for the corresponding decryption of the ciphertext to re-

cover the original plaintext.
We have shown that the Hill cipher succumbs to a known plaintext attack if sufficient
plaintext—ciphertext pairs are provided. It is even easier to solve the Hill cipher if a
chosen plaintext attack can be mounted. Describe such an attack.

b
It can be shown that the Hill cipher with the matrix (u d) requires that (ad — bc)
c

is relatively prime to 26; that is, the only common positive integer factor of (ad — bc)
and 26 is 1. Thus, if (ad — bc) = 13 or is even, the matrix is not allowed. Determine

59

the number of different (good) keys there are for a 2 X 2 Hill cipher without counting

them one by one, using the following steps:
Find the number of matrices whose determinant is even because one or both rows
are even. (A row is “even” if both entries in the row are even.)
Find the number of matrices whose determinant is even because one or both
columns are even. (A column is “even” if both entries in the column are even.)
Find the number of matrices whose determinant is even because all of the entries
are odd.
Taking into account overlaps, find the total number of matrices whose determinant
is even.
Find the number of matrices whose determinant is a multiple of 13 because the
first column is a multiple of 13.
Find the number of matrices whose determinant is a multiple of 13 where the
first column is not a multiple of 13 but the second column is a multiple of the first
modulo 13.
Find the total number of matrices whose determinant is a multiple of 13.
Find the number of matrices whose determinant is a multiple of 26 because they
fit cases parts (a) and (e), (b) and (e), (c) and (e), (a) and (f), and so on.
Find the total number of matrices whose determinant is neither a multiple of 2 nor
a multiple of 13.

Calculate the determinant mod 26 of

(2 o2
> 4 1 2 5

Determine the inverse mod 26 of

) 3 6 24 1
1 » 13 16 10
20 17 15

Using the Vigenere cipher, encrypt the word “explanation” using the key leg.
This problem explores the use of a one-time pad version of the Vigenere cipher.
In this scheme, the key is a stream of random numbers between 0 and 26. For
example, if the key is 3 19 5..., then the first letter of plaintext is encrypted with
a shift of 3 letters, the second with a shift of 19 letters, the third with a shift of
5 letters, and so on.

Encrypt the plaintext sendmoremoney with the key stream

9 01 7 23 15 21 14 11 11 2 8 9

Using the ciphertext produced in part (a), find a key so that the cipher text decrypts
to the plaintext cashnotneeded.

What is the message embedded in Figure 2.9?

Write a program that can encrypt and decrypt using the general Caesar cipher, also
known as an additive cipher.

Write a program that can encrypt and decrypt using the affine cipher described in
Problem 2.1.

60

Write a program that can perform a letter frequency attack on an additive cipher
without human intervention. Your software should produce possible plaintexts in
rough order of likelihood. It would be good if your user interface allowed the user to
specify “give me the top 10 possible plaintexts.”

Write a program that can perform a letter frequency attack on any monoalphabetic
substitution cipher without human intervention. Your software should produce pos-
sible plaintexts in rough order of likelihood. It would be good if your user interface
allowed the user to specify “give me the top 10 possible plaintexts.”

Create software that can encrypt and decrypt using a 2 X 2 Hill cipher.

Create software that can perform a fast known plaintext attack on a Hill cipher, given
the dimension m. How fast are your algorithms, as a function of m?

Brock CIPHERS AND THE DATA
ENCRYPTION STANDARD

3.1 Traditional Block Cipher Structure

Stream Ciphers and Block Ciphers
Motivation for the Feistel Cipher Structure
The Feistel Cipher

3.2 The Data Encryption Standard

DES Encryption
DES Decryption

3.3 A DES Example

Results
The Avalanche Effect

3.4 The Strength of DES

The Use of 56-Bit Keys
The Nature of the DES Algorithm
Timing Attacks

3.5 Block Cipher Design Principles

Number of Rounds
Design of Function F
Key Schedule Algorithm

3.6 Recommended Reading

3.7 Key Terms, Review Questions, and Problems

61

“But what is the use of the cipher message without the cipher?”

— The Valley of Fear, Sir Arthur Conan Doyle

LEARNING OBJECTIVES

After studying this chapter, you should be able to

Understand the distinction between stream ciphers and block ciphers.

Present an overview of the Feistel cipher and explain how decryption is
the inverse of encryption.

Present an overview of Data Encryption Standard (DES).
Explain the concept of the avalanche effect.

Discuss the cryptographic strength of DES.

Summarize the principal block cipher design principles.

The objective of this chapter is to illustrate the principles of modern symmetric
ciphers. For this purpose, we focus on the most widely used symmetric cipher: the
Data Encryption Standard (DES). Although numerous symmetric ciphers have been
developed since the introduction of DES, and although it is destined to be replaced
by the Advanced Encryption Standard (AES), DES remains the most important
such algorithm. Furthermore, a detailed study of DES provides an understanding of
the principles used in other symmetric ciphers.

This chapter begins with a discussion of the general principles of symmetric
block ciphers, which are the type of symmetric ciphers studied in this book (with
the exception of the stream cipher RC4 in Chapter 7). Next, we cover full DES.
Following this look at a specific algorithm, we return to a more general discussion
of block cipher design.

Compared to public-key ciphers, such as RSA, the structure of DES and most
symmetric ciphers is very complex and cannot be explained as easily as RSA and simi-
lar algorithms. Accordingly, the reader may wish to begin with a simplified version of
DES, which is described in Appendix G. This version allows the reader to perform
encryption and decryption by hand and gain a good understanding of the working of
the algorithm details. Classroom experience indicates that a study of this simplified
version enhances understanding of DES.!

"However, you may safely skip Appendix G, at least on a first reading. If you get lost or bogged down in
the details of DES, then you can go back and start with simplified DES.

3.1 / TRADITIONAL BLOCK CIPHER STRUCTURE 63

3.1 TRADITIONAL BLOCK CIPHER STRUCTURE

Many symmetric block encryption algorithms in current use are based on a struc-
ture referred to as a Feistel block cipher [FEIS73]. For that reason, it is important
to examine the design principles of the Feistel cipher. We begin with a comparison
of stream ciphers and block ciphers. Then we discuss the motivation for the Feistel
block cipher structure. Finally, we discuss some of its implications.

Stream Ciphers and Block Ciphers

A stream cipher is one that encrypts a digital data stream one bit or one byte at
a time. Examples of classical stream ciphers are the autokeyed Vigenere cipher
and the Vernam cipher. In the ideal case, a one-time pad version of the Vernam
cipher would be used (Figure 2.7), in which the keystream (k;) is as long as the
plaintext bit stream (p;). If the cryptographic keystream is random, then this cipher
is unbreakable by any means other than acquiring the keystream. However, the
keystream must be provided to both users in advance via some independent and
secure channel. This introduces insurmountable logistical problems if the intended
data traffic is very large.

Accordingly, for practical reasons, the bit-stream generator must be
implemented as an algorithmic procedure, so that the cryptographic bit stream
can be produced by both users. In this approach (Figure 3.1a), the bit-stream
generator is a key-controlled algorithm and must produce a bit stream that is
cryptographically strong. That is, it must be computationally impractical to
predict future portions of the bit stream based on previous portions of the bit
stream. The two users need only share the generating key, and each can produce
the keystream.

A block cipher is one in which a block of plaintext is treated as a whole
and used to produce a ciphertext block of equal length. Typically, a block size of
64 or 128 bits is used. As with a stream cipher, the two users share a symmetric
encryption key (Figure 3.1b). Using some of the modes of operation explained
in Chapter 6, a block cipher can be used to achieve the same effect as a stream
cipher.

Far more effort has gone into analyzing block ciphers. In general, they seem
applicable to a broader range of applications than stream ciphers. The vast ma-
jority of network-based symmetric cryptographic applications make use of block
ciphers. Accordingly, the concern in this chapter, and in our discussions throughout
the book of symmetric encryption, will primarily focus on block ciphers.

Motivation for the Feistel Cipher Structure

A block cipher operates on a plaintext block of n bits to produce a ciphertext
block of n bits. There are 2" possible different plaintext blocks and, for the
encryption to be reversible (i.e., for decryption to be possible), each must pro-
duce a unique ciphertext block. Such a transformation is called reversible, or

64

Key

(K)

Bit-stream
generation
algorithm

Plaintext

@)

ENCRYPTION

Key

(K)

Bit-stream
generation
algorithm

Ciphertext

CHAPTER 3 / BLOCK CIPHERS AND THE DATA ENCRYPTION STANDARD

Plaintext

(c ,‘)

DECRYPTION

(a) Stream cipher using algorithmic bit-stream generator

b bits

Plaintext

Key
(K)—™

Encryption
algorithm

Figure 3.1

b bits

-

| Ciphertext I
-

b bits

(b) Block cipher

Stream Cipher and Block Cipher

Key Decryption
(K) algorithm
>
b bits

@)

nonsingular. The following examples illustrate nonsingular and singular transfor-
mations for n = 2.

Reversible Mapping Irreversible Mapping
Plaintext Ciphertext Plaintext Ciphertext
00 11 00 11
01 10 01 10
10 00 10 01
11 01 11 01

In the latter case, a ciphertext of 01 could have been produced by one of two plain-
text blocks. So if we limit ourselves to reversible mappings, the number of different
transformations is 2'!.2

The reasoning is as follows: For the first plaintext, we can choose any of 2 ciphertext blocks. For the
second plaintext, we choose from among 2" — 1 remaining ciphertext blocks, and so on.

65

4-bit input

4 to 16 decoder
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

! R A A AR N

4 5 6 7 8 9 10 11 12 13 14 15
16 to 4 encoder

4-bit output
General n-bit-n-bit Block Substitution (shown with n = 4)

Figure 3.2 illustrates the logic of a general substitution cipher for n = 4.
A 4-bit input produces one of 16 possible input states, which is mapped by the sub-
stitution cipher into a unique one of 16 possible output states, each of which is repre-
sented by 4 ciphertext bits. The encryption and decryption mappings can be defined
by a tabulation, as shown in Table 3.1. This is the most general form of block cipher
and can be used to define any reversible mapping between plaintext and ciphertext.

Encryption and Decryption Tables for Substitution

Cipher of Figure 3.2
Plaintext Ciphertext Ciphertext Plaintext
0000 1110 0000 1110
0001 0100 0001 0011
0010 1101 0010 0100
0011 0001 0011 1000
0100 0010 0100 0001
0101 1111 0101 1100
0110 1011 0110 1010
0111 1000 0111 1111
1000 0011 1000 0111
1001 1010 1001 1101
1010 0110 1010 1001
1011 1100 1011 0110
1100 0101 1100 1011
1101 1001 1101 0010
1110 0000 1110 0000
1111 0111 1111 0101

66

Feistel refers to this as the ideal block cipher, because it allows for the maximum
number of possible encryption mappings from the plaintext block [FEIS75].

But there is a practical problem with the ideal block cipher. If a small block
size, such as n = 4, is used, then the system is equivalent to a classical substitution
cipher. Such systems, as we have seen, are vulnerable to a statistical analysis of the
plaintext. This weakness is not inherent in the use of a substitution cipher but rather
results from the use of a small block size. If # is sufficiently large and an arbitrary re-
versible substitution between plaintext and ciphertext is allowed, then the statistical
characteristics of the source plaintext are masked to such an extent that this type of
cryptanalysis is infeasible.

An arbitrary reversible substitution cipher (the ideal block cipher) for a large
block size is not practical, however, from an implementation and performance
point of view. For such a transformation, the mapping itself constitutes the key.
Consider again Table 3.1, which defines one particular reversible mapping from
plaintext to ciphertext for n = 4. The mapping can be defined by the entries in the
second column, which show the value of the ciphertext for each plaintext block.
This, in essence, is the key that determines the specific mapping from among all pos-
sible mappings. In this case, using this straightforward method of defining the key,
the required key length is (4 bits) X (16 rows) = 64 bits. In general, for an n-bit
ideal block cipher, the length of the key defined in this fashion is n X 2" bits. For a
64-bit block, which is a desirable length to thwart statistical attacks, the required
key length is 64 X 264 = 270 = 10°! bits.

In considering these difficulties, Feistel points out that what is needed is an
approximation to the ideal block cipher system for large n, built up out of compo-
nents that are easily realizable [FEIS75]. But before turning to Feistel’s approach,
let us make one other observation. We could use the general block substitution
cipher but, to make its implementation tractable, confine ourselves to a subset of
the 2! possible reversible mappings. For example, suppose we define the mapping
in terms of a set of linear equations. In the case of n = 4, we have

y1 = kixy + kipxy + ki + kigxy
Y2 = kyxy + kpxy + kozxs + kogxy
V3 = kaixy + kapxp + kazxs + kagxy
Yo = kaxy + kypxy + kyzxs + kyaxy

where the x; are the four binary digits of the plaintext block, the y; are the four
binary digits of the ciphertext block, the k;; are the binary coefficients, and arithme-
tic is mod 2. The key size is just #2, in this case 16 bits. The danger with this kind of
formulation is that it may be vulnerable to cryptanalysis by an attacker that is aware
of the structure of the algorithm. In this example, what we have is essentially the
Hill cipher discussed in Chapter 2, applied to binary data rather than characters. As
we saw in Chapter 2, a simple linear system such as this is quite vulnerable.

Feistel proposed [FEIS73] that we can approximate the ideal block cipher by utilizing
the concept of a product cipher, which is the execution of two or more simple ciphers
in sequence in such a way that the final result or product is cryptographically stronger

67

than any of the component ciphers. The essence of the approach is to develop a block
cipher with a key length of k bits and a block length of » bits, allowing a total of 2
possible transformations, rather than the 2"! transformations available with the ideal
block cipher.

In particular, Feistel proposed the use of a cipher that alternates substitutions
and permutations, where these terms are defined as follows:

Substitution: Each plaintext element or group of elements is uniquely replaced
by a corresponding ciphertext element or group of elements.

Permutation: A sequence of plaintext elements is replaced by a permutation
of that sequence. That is, no elements are added or deleted or replaced in the
sequence, rather the order in which the elements appear in the sequence is
changed.

In fact, Feistel’s is a practical application of a proposal by Claude Shannon
to develop a product cipher that alternates confusion and diffusion functions
[SHAN49].> We look next at these concepts of diffusion and confusion and then
present the Feistel cipher. But first, it is worth commenting on this remarkable fact:
The Feistel cipher structure, which dates back over a quarter century and which, in
turn, is based on Shannon’s proposal of 1945, is the structure used by many signifi-
cant symmetric block ciphers currently in use.

The terms diffusion and confusion were introduced by
Claude Shannon to capture the two basic building blocks for any cryptographic
system [SHAN49]. Shannon’s concern was to thwart cryptanalysis based on statisti-
cal analysis. The reasoning is as follows. Assume the attacker has some knowledge
of the statistical characteristics of the plaintext. For example, in a human-readable
message in some language, the frequency distribution of the various letters may be
known. Or there may be words or phrases likely to appear in the message (probable
words). If these statistics are in any way reflected in the ciphertext, the cryptanalyst
may be able to deduce the encryption key, part of the key, or at least a set of keys
likely to contain the exact key. In what Shannon refers to as a strongly ideal cipher,
all statistics of the ciphertext are independent of the particular key used. The arbi-
trary substitution cipher that we discussed previously (Figure 3.2) is such a cipher,
but as we have seen, it is impractical.*

Other than recourse to ideal systems, Shannon suggests two methods for
frustrating statistical cryptanalysis: diffusion and confusion. In diffusion, the
statistical structure of the plaintext is dissipated into long-range statistics of the
ciphertext. This is achieved by having each plaintext digit affect the value of many

3The paper is available at this book’s Premium Content Web site. Shannon’s 1949 paper appeared origi-
nally as a classified report in 1945. Shannon enjoys an amazing and unique position in the history of
computer and information science. He not only developed the seminal ideas of modern cryptography but
is also responsible for inventing the discipline of information theory. Based on his work in information
theory, he developed a formula for the capacity of a data communications channel, which is still used
today. In addition, he founded another discipline, the application of Boolean algebra to the study of digi-
tal circuits; this last he managed to toss off as a master’s thesis.

4Appendix F expands on Shannon’s concepts concerning measures of secrecy and the security of crypto-
graphic algorithms.

68

ciphertext digits; generally, this is equivalent to having each ciphertext digit be
affected by many plaintext digits. An example of diffusion is to encrypt a message
M = my, my, ms, ... of characters with an averaging operation:

k
Vo = <Emn+,~> mod 26
=1

adding k successive letters to get a ciphertext letter y,. One can show that the sta-
tistical structure of the plaintext has been dissipated. Thus, the letter frequencies in
the ciphertext will be more nearly equal than in the plaintext; the digram frequen-
cies will also be more nearly equal, and so on. In a binary block cipher, diffusion can
be achieved by repeatedly performing some permutation on the data followed by
applying a function to that permutation; the effect is that bits from different posi-
tions in the original plaintext contribute to a single bit of ciphertext.’

Every block cipher involves a transformation of a block of plaintext into a
block of ciphertext, where the transformation depends on the key. The mechanism
of diffusion seeks to make the statistical relationship between the plaintext and
ciphertext as complex as possible in order to thwart attempts to deduce the key. On
the other hand, confusion seeks to make the relationship between the statistics of
the ciphertext and the value of the encryption key as complex as possible, again to
thwart attempts to discover the key. Thus, even if the attacker can get some handle
on the statistics of the ciphertext, the way in which the key was used to produce that
ciphertext is so complex as to make it difficult to deduce the key. This is achieved by
the use of a complex substitution algorithm. In contrast, a simple linear substitution
function would add little confusion.

As [ROBS95b] points out, so successful are diffusion and confusion in captur-
ing the essence of the desired attributes of a block cipher that they have become the
cornerstone of modern block cipher design.

The left-hand side of Figure 3.3 depicts the structure
proposed by Feistel. The inputs to the encryption algorithm are a plaintext block of
length 2w bits and a key K. The plaintext block is divided into two halves, Lj and Ry.
The two halves of the data pass through » rounds of processing and then combine to
produce the ciphertext block. Each round i has as inputs L;_; and R;_; derived from
the previous round, as well as a subkey K; derived from the overall K. In general,
the subkeys K; are different from K and from each other. In Figure 3.3, 16 rounds
are used, although any number of rounds could be implemented.

All rounds have the same structure. A substitution is performed on the left half
of the data. This is done by applying a round function F to the right half of the data
and then taking the exclusive-OR of the output of that function and the left half of the
data. The round function has the same general structure for each round but is param-
eterized by the round subkey K;. Another way to express this is to say that F is a func-
tion of right-half block of w bits and a subkey of y bits, which produces an output value

Some books on cryptography equate permutation with diffusion. This is incorrect. Permutation, by itself,

does not change the statistics of the plaintext at the level of individual letters or permuted blocks. For
example, in DES, the permutation swaps two 32-bit blocks, so statistics of strings of 32 bits or less are
preserved.

3.1 / TRADITIONAL BLOCK CIPHER STRUCTURE 69

Output (plaintext)

[RD17=LEy LDy;=RE, |

Input (plaintext) ¢><T

LEy | RE, | [LD16=RE): RDs=LE, |
o
= = %
: g
& g K
LEy = RE; | LD5=RE{ RD5=LE, |
wn
= o %
2 g
& g K,
LD14 = RE2 RD14 =LE2 |
[[J
[J []
[[J
LEyy | REy | LD,=REqy RD,=LE,4|
= a (L
=] e £
g s
& & Kis
LD =RE;5. RD{=LEs|
" - j)
-
=] e £
g s
& & K6
| _LE | REy | LDg=RE g RDy=LE |
X Input (ciphertext)
[LBy REy |
Output (ciphertext)

Figure 3.3 Feistel Encryption and Decryption (16 rounds)

of length w bits: F(RE,, K,). Following this substitution, a permutation is performed
that consists of the interchange of the two halves of the data.® This structure is a par-
ticular form of the substitution-permutation network (SPN) proposed by Shannon.

®The final round is followed by an interchange that undoes the interchange that is part of the final round.
One could simply leave both interchanges out of the diagram, at the sacrifice of some consistency of pre-

sentation. In any case, the effective lack of a swap in the final round is done to simplify the implementa-
tion of the decryption process, as we shall see.

The exact realization of a Feistel network depends on the choice of the follow-
ing parameters and design features:

Block size: Larger block sizes mean greater security (all other things being
equal) but reduced encryption/decryption speed for a given algorithm. The
greater security is achieved by greater diffusion. Traditionally, a block size of
64 bits has been considered a reasonable tradeoff and was nearly universal in
block cipher design. However, the new AES uses a 128-bit block size.

Key size: Larger key size means greater security but may decrease encryption/
decryption speed. The greater security is achieved by greater resistance to
brute-force attacks and greater confusion. Key sizes of 64 bits or less are now
widely considered to be inadequate, and 128 bits has become a common size.

Number of rounds: The essence of the Feistel cipher is that a single round
offers inadequate security but that multiple rounds offer increasing security.
A typical size is 16 rounds.

Subkey generation algorithm: Greater complexity in this algorithm should
lead to greater difficulty of cryptanalysis.

Round function F: Again, greater complexity generally means greater resis-
tance to cryptanalysis.

There are two other considerations in the design of a Feistel cipher:

Fast software encryption/decryption: In many cases, encryption is embedded in
applications or utility functions in such a way as to preclude a hardware imple-
mentation. Accordingly, the speed of execution of the algorithm becomes a
concern.

Ease of analysis: Although we would like to make our algorithm as difficult as
possible to cryptanalyze, there is great benefit in making the algorithm easy to
analyze. That is, if the algorithm can be concisely and clearly explained, it is
easier to analyze that algorithm for cryptanalytic vulnerabilities and therefore
develop a higher level of assurance as to its strength. DES, for example, does
not have an easily analyzed functionality.

The process of decryption with a Feistel cipher
is essentially the same as the encryption process. The rule is as follows: Use the
ciphertext as input to the algorithm, but use the subkeys K; in reverse order. That
is, use K, in the first round, K,,_; in the second round, and so on, until K is used in
the last round. This is a nice feature, because it means we need not implement two
different algorithms; one for encryption and one for decryption.

To see that the same algorithm with a reversed key order produces the correct
result, Figure 3.3 shows the encryption process going down the left-hand side and the
decryption process going up the right-hand side for a 16-round algorithm. For clarity,
we use the notation LE; and RE; for data traveling through the encryption algorithm
and LD; and RD; for data traveling through the decryption algorithm. The diagram
indicates that, at every round, the intermediate value of the decryption process is
equal to the corresponding value of the encryption process with the two halves of the
value swapped. To put this another way, let the output of the ith encryption round be

71

LE;|RE; (LE, concatenated with RE;). Then the corresponding output of the (16 —i)
th decryption round is RE;|LE; or, equivalently, LD14_ JRD1s_.

Let us walk through Figure 3.3 to demonstrate the validity of the preceding
assertions. After the last iteration of the encryption process, the two halves of the
output are swapped, so that the ciphertext is RE4|LE. The output of that round
is the ciphertext. Now take that ciphertext and use it as input to the same algorithm.
The input to the first round is RE 4| LE¢, which is equal to the 32-bit swap of the
output of the sixteenth round of the encryption process.

Now we would like to show that the output of the first round of the decryption
process is equal to a 32-bit swap of the input to the sixteenth round of the encryption
process. First, consider the encryption process. We see that

LE16 = RE15
RE s = LEs @ F(RE;s, Ki5)

On the decryption side,

LD, = RDy = LE;; = REjs
RD; = LDy ® F(RDy, K¢)

= RE;c @ F(RE;s5, Ki6)

= [LE5s @ F(RE;s, K16)] ® F(RE;s, K1)

The XOR has the following properties:

[ADB|®C=AD[BD (]
D®D =0
E®O0=E

Thus, we have LD; = RE 5 and RD; = LE;s. Therefore, the output of the first
round of the decryption process is RE;s| LE;s, which is the 32-bit swap of the input
to the sixteenth round of the encryption. This correspondence holds all the way
through the 16 iterations, as is easily shown. We can cast this process in general
terms. For the ith iteration of the encryption algorithm,

LEI' - REi*l
RE; = LE;_ ® F(RE;_, K;)

Rearranging terms:

REi—l = LEl
LE,_y = RE,®F(RE,_,K;) = RE,® F(LE, K;)

Thus, we have described the inputs to the ith iteration as a function of the outputs, and
these equations confirm the assignments shown in the right-hand side of Figure 3.3.

Finally, we see that the output of the last round of the decryption process is
RE,| LE,. A 32-bit swap recovers the original plaintext, demonstrating the validity
of the Feistel decryption process.

Note that the derivation does not require that F be a reversible function. To
see this, take a limiting case in which F produces a constant output (e.g., all ones)
regardless of the values of its two arguments. The equations still hold.

72 CHAPTER 3 / BLOCK CIPHERS AND THE DATA ENCRYPTION STANDARD

Encryption round Decryption round

F(03A6, 12DE52) @
[F(03A6, 12DE52) @ DE7F]

DE7F 03A6 03A6 =DET7F

Round 15
Round 2

12DES2

03A6 F(03A6, 12DE52) ® DE7F F(03A6, 12DE52) ®DE7F 03A6
Figure 3.4 Feistel Example

To help clarify the preceding concepts, let us look at a specific example
(Figure 3.4 and focus on the fifteenth round of encryption, corresponding to the sec-
ond round of decryption. Suppose that the blocks at each stage are 32 bits (two 16-bit
halves) and that the key size is 24 bits. Suppose that at the end of encryption round
fourteen, the value of the intermediate block (in hexadecimal) is DE7F03A6. Then
LE,; = DETF and RE; = 03A6. Also assume that the value of K5 is 12DES52.
After round 15, we have LE5s=03A6 and RE 5 = F(03A6, 12DES52) @ DETF.

Now let’slook at the decryption. We assume that LD; = REsand RD; = LE;s,
asshowninFigure3.3,and we wanttodemonstratethat LD, = RE;;andRD, = LE,.
So, we start with LD; = F(03A6, 12DE52) @ DE7F and RD; = 03A6. Then,
from Figure 3.3, LD, = 03A6 = RE, and RD, = F(03A6, 12DE52) ® [F(03A6,
12DES2) @ DE7F]=DE7F =LE14.

THE DATA ENCRYPTION STANDARD

Until the introduction of the Advanced Encryption Standard (AES) in 2001, the
Data Encryption Standard (DES) was the most widely used encryption scheme.
DES was issued in 1977 by the National Bureau of Standards, now the National
Institute of Standards and Technology (NIST), as Federal Information Processing
Standard 46 (FIPS PUB 46). The algorithm itself is referred to as the Data
Encryption Algorithm (DEA).” For DEA, data are encrypted in 64-bit blocks using
a 56-bit key. The algorithm transforms 64-bit input in a series of steps into a 64-bit
output. The same steps, with the same key, are used to reverse the encryption.
Over the years, DES became the dominant symmetric encryption algorithm,
especially in financial applications. In 1994, NIST reaffirmed DES for federal use
for another five years; NIST recommended the use of DES for applications other

"The terminology is a bit confusing. Until recently, the terms DES and DEA could be used interchange-
ably. However, the most recent edition of the DES document includes a specification of the DEA
described here plus the triple DEA (TDEA) described in Chapter 6. Both DEA and TDEA are part of
the Data Encryption Standard. Further, until the recent adoption of the official term TDEA, the triple
DEA algorithm was typically referred to as triple DES and written as 3DES. For the sake of convenience,
we will use the term 3DES.

3.2 / THE DATA ENCRYPTION STANDARD 73

than the protection of classified information. In 1999, NIST issued a new version
of its standard (FIPS PUB 46-3) that indicated that DES should be used only for
legacy systems and that triple DES (which in essence involves repeating the DES
algorithm three times on the plaintext using two or three different keys to produce
the ciphertext) be used. We study triple DES in Chapter 6. Because the underly-
ing encryption and decryption algorithms are the same for DES and triple DES, it
remains important to understand the DES cipher. This section provides an over-
view. For the interested reader, Appendix S provides further detail.

DES Encryption

The overall scheme for DES encryption is illustrated in Figure 3.5. As with any en-
cryption scheme, there are two inputs to the encryption function: the plaintext to be

64-bit plaintext 64-bit key

Initial permutation

Permuted choice 2

K, 48 56 _ i
Round 2 Permuted choice 2 Left circular shift

Left circular shift

Round 16 Permuted choice 2

32-bit swap

Inverse initial
permutation

_,_Y\)

64-bit ciphertext

Figure 3.5 General Depiction of DES Encryption Algorithm

74 CHAPTER 3 / BLOCK CIPHERS AND THE DATA ENCRYPTION STANDARD

encrypted and the key. In this case, the plaintext must be 64 bits in length and the
key is 56 bits in length.®

Looking at the left-hand side of the figure, we can see that the processing
of the plaintext proceeds in three phases. First, the 64-bit plaintext passes through
an initial permutation (IP) that rearranges the bits to produce the permuted input.
This is followed by a phase consisting of sixteen rounds of the same function, which
involves both permutation and substitution functions. The output of the last (six-
teenth) round consists of 64 bits that are a function of the input plaintext and the
key. The left and right halves of the output are swapped to produce the preoutput.
Finally, the preoutput is passed through a permutation [IP '] that is the inverse of
the initial permutation function, to produce the 64-bit ciphertext. With the excep-
tion of the initial and final permutations, DES has the exact structure of a Feistel
cipher, as shown in Figure 3.3.

The right-hand portion of Figure 3.5 shows the way in which the 56-bit key is
used. Initially, the key is passed through a permutation function. Then, for each of
the sixteen rounds, a subkey (K;) is produced by the combination of a left circular
shift and a permutation. The permutation function is the same for each round, but a
different subkey is produced because of the repeated shifts of the key bits.

DES Decryption

As with any Feistel cipher, decryption uses the same algorithm as encryption,
except that the application of the subkeys is reversed. Additionally, the initial and
final permutations are reversed.

3.3 A DES EXAMPLE

We now work through an example and consider some of its implications. Although
you are not expected to duplicate the example by hand, you will find it informative
to study the hex patterns that occur from one step to the next.

For this example, the plaintext is a hexadecimal palindrome. The plaintext,
key, and resulting ciphertext are as follows:

Plaintext: 02468aceeca86420
Key: 0£1571c947d9e859
Ciphertext: | da02ce3a89ecac3b

Results

Table 3.2 shows the progression of the algorithm. The first row shows the 32-bit
values of the left and right halves of data after the initial permutation. The next 16
rows show the results after each round. Also shown is the value of the 48-bit subkey

8 Actually, the function expects a 64-bit key as input. However, only 56 of these bits are ever used; the
other 8 bits can be used as parity bits or simply set arbitrarily.

75

DES Example
Round Ki Li Ri
1P 52005200 3cf03cof
1 1e030£03080d2930 3cf03cof bad22845
2 0a31293432242318 bad22845 99e9b723
3 23072318201d0c1d 99e9b723 Obae3b9e
4 05261d3824311a20 Obae3b9e 42415649
5 3325340136002c25 42415649 18b3fa4l
6 123a2d0d04262alc 18b3fa4l 9616fe23
7 021£120b1c130611 9616fe23 67117cf2
8 1¢10372a2832002b 67117cf2 cl1bfc09
9 04292a2380c341£03 cl1bfc09 887fbcée
10 2703212607280403 887fbc6c 600f7e8b
1 2826390c31261504 600f7e8b £596506e
12 12071c241a0a0f08 £f596506e 738538Db8
13 300935393c0d100b 738538b8 c6a62cie
14 311e09231321182a c6a6b2c4de 56b0bd75
15 283d3e0227072528 56b0bd75 75e8£d8f
16 2921080b13143025 75e8fd8f 25896490
P! da02ce3a 89ecac3b

Note: DES subkeys are shown as eight 6-bit values in hex format

generated for each round. Note that L; = R;_;. The final row shows the left- and
right-hand values after the inverse initial permutation. These two values combined
form the ciphertext.

A desirable property of any encryption algorithm is that a small change in either
the plaintext or the key should produce a significant change in the ciphertext. In
particular, a change in one bit of the plaintext or one bit of the key should produce
a change in many bits of the ciphertext. This is referred to as the avalanche effect. If
the change were small, this might provide a way to reduce the size of the plaintext
or key space to be searched.

Using the example from Table 3.2, Table 3.3 shows the result when the fourth
bit of the plaintext is changed, so that the plaintext is 12468aceeca86420. The
second column of the table shows the intermediate 64-bit values at the end of each
round for the two plaintexts. The third column shows the number of bits that differ
between the two intermediate values. The table shows that, after just three rounds,
18 bits differ between the two blocks. On completion, the two ciphertexts differ in
32 bit positions.

Table 3.4 shows a similar test using the original plaintext of with two keys that
differ in only the fourth bit position: the original key, 0£1571c947d9e859, and
the altered key, 1£1571c947d9e859. Again, the results show that about half of
the bits in the ciphertext differ and that the avalanche effect is pronounced after just
a few rounds.

76

Avalanche Effect in DES: Change in Plaintext

Round S Round S
02468aceecal86420 1 9 cllbfc09887fbcec 32
12468aceeca86420 99f911532eed7d94

1 3cf03c0fbad22845 1 10 887fbc6c600f7e8b 34
3cf03c0fbad32845 2eed7d94d0£f23094

2 bad2284599e9b723 5 11 600£7e8bf596506e 37
bad3284539a9b7a3 d0f23094455da9c4

3 99e9b7230bael3b9e 18 12 £596506e738538b8 31
39a9b7a3171cb8b3 455da9c47f6e3ct3

4 Obae3b9e42415649 34 13 738538b8c6eab2cie 29
171cb8b3ccacabbe 7f6e3cfl34bcla8dd

5 4241564918b3fadl 37 14 c6a62c4e56b0bd75 33
ccacab5edl6c3653 4bcla8d91e07d409

6 18b3fad419616fe23 33 15 56b0bd7575e8fd8f 31
dl6c3653cf402c68 1e07d4091ce2e6bdc

7 9616fe2367117cf2 32 16 75e8fd8£25896490 32
cf402c682b2cefbec lce2e6dc365e5£59

8 67117cf2c11bfc09 33 P! da02ce3a89ecac3b 32
2b2cefbc99£91153 057cde97d7683f2a
Avalanche Effect in DES: Change in Key

Round S Round S
02468aceeca86420 9 cllbfc09887fbcec 34
02468aceeca86420 548flde471f64dfd

1 3cf03c0fbad22845 3 10 887fbc6c600£7e8b 36
3cf03c0f9ade28c5 71f64dfd4279876c

2 bad2284599e9b723 11 11 600f7e8bf596506e 32
9ad628c59939136b 4279876c399fdc0d

3 99e9b7230bae3b9e 25 12 £596506e738538b8 28
9939136b768067b7 399fdc0d6ed208dbb

4 0bae3b9e42415649 29 13 738538b8c6hak2cie 33
768067b75a8807c5 6d208dbbb9obdeeaa

5 4241564918b3fa4l 26 14 c6ab2c4e56b0bd75 30
5a8807c5488dbe94 b9bdeeaad2c3as6f

6 18b3fad419616fe23 26 15 56b0bd7575e8fd8f 33
488dbe9%4aba7fe53 d2c3a56£f2765clfb

7 9616fe2367117cf2 27 16 75e8£d8£25896490 30
aba7fe53177d21e4 2765c1fb01263dc4

8 67117cf2c11bfc09 32 P! da02ce3a89ecac3b 30
177d21e4548f1de4 ee92b50606b62b0b

77

Since its adoption as a federal standard, there have been lingering concerns about
the level of security provided by DES. These concerns, by and large, fall into two
areas: key size and the nature of the algorithm.

With a key length of 56 bits, there are 23° possible keys, which is approximately
7.2 X 10'¢ keys. Thus, on the face of it, a brute-force attack appears impractical.
Assuming that, on average, half the key space has to be searched, a single machine
performing one DES encryption per microsecond would take more than a thousand
years to break the cipher.

However, the assumption of one encryption per microsecond is overly con-
servative. As far back as 1977, Diffie and Hellman postulated that the technology
existed to build a parallel machine with 1 million encryption devices, each of which
could perform one encryption per microsecond [DIFF77]. This would bring the
average search time down to about 10 hours. The authors estimated that the cost
would be about $20 million in 1977 dollars.

With current technology, it is not even necessary to use special, purpose-built
hardware. Rather, the speed of commercial, off-the-shelf processors threaten the
security of DES. A recent paper from Seagate Technology [SEAGOS] suggests that
a rate of 1 billion (10%) key combinations per second is reasonable for today’s mul-
ticore computers. Recent offerings confirm this. Both Intel and AMD now offer
hardware-based instructions to accelerate the use of AES. Tests run on a contem-
porary multicore Intel machine resulted in an encryption rate of about half a bil-
lion encryptions per second [BASU12]. Another recent analysis suggests that with
contemporary supercomputer technology, a rate of 10'* encryptions per second is
reasonable [AROR12].

With these results in mind, Table 3.5 shows how much time is required for
a brute-force attack for various key sizes. As can be seen, a single PC can break
DES in about a year; if multiple PCs work in parallel, the time is drastically short-
ened. And today’s supercomputers should be able to find a key in about an hour.
Key sizes of 128 bits or greater are effectively unbreakable using simply a brute-
force approach. Even if we managed to speed up the attacking system by a factor
of 1 trillion (10'?), it would still take over 100,000 years to break a code using a
128-bit key.

Fortunately, there are a number of alternatives to DES, the most important of
which are AES and triple DES, discussed in Chapters 5 and 6, respectively.

Another concern is the possibility that cryptanalysis is possible by exploiting
the characteristics of the DES algorithm. The focus of concern has been on the
eight substitution tables, or S-boxes, that are used in each iteration (described
in Appendix S). Because the design criteria for these boxes, and indeed for the
entire algorithm, were not made public, there is a suspicion that the boxes were

78 CHAPTER 3 / BLOCK CIPHERS AND THE DATA ENCRYPTION STANDARD

Table 3.5 Average Time Required for Exhaustive Key Search

Time Required
Number of Time Required at 10° at 1013
Key Size (bits) Cipher Alternative Keys Decryptions/s Decryptions/s
56 DES 2%0%72%10'° 2% ns =1.125 years 1 hour
128 AES 2128 %3.4%x10% 2127 ns = 5.3 X 10%! years 5.3 % 10" years
168 Triple DES 2198 %37 % 10° 2167 ns = 5.8 X 1033 years 5.8 X 10? years
192 AES 219263 %10% 2191 ns = 9.8 X 10*0 years 9.8 X 10% years
256 AES 2256 ~12x107 2255 ns = 1.8 X 10% years 1.8 X 10% years
26 characters | Monoalphabetic 21=4x10% 2x10%° ns=63x10 years | 6.3 X 10° years
(permutation)

constructed in such a way that cryptanalysis is possible for an opponent who knows
the weaknesses in the S-boxes. This assertion is tantalizing, and over the years a
number of regularities and unexpected behaviors of the S-boxes have been discov-
ered. Despite this, no one has so far succeeded in discovering the supposed fatal
weaknesses in the S-boxes.’

Timing Attacks

We discuss timing attacks in more detail in Part Two, as they relate to public-key
algorithms. However, the issue may also be relevant for symmetric ciphers. In essence,
a timing attack is one in which information about the key or the plaintext is obtained
by observing how long it takes a given implementation to perform decryptions on
various ciphertexts. A timing attack exploits the fact that an encryption or decryption
algorithm often takes slightly different amounts of time on different inputs. [HEVI99]
reports on an approach that yields the Hamming weight (number of bits equal to one)
of the secret key. This is a long way from knowing the actual key, but it is an intriguing
first step. The authors conclude that DES appears to be fairly resistant to a successful
timing attack but suggest some avenues to explore. Although this is an interesting line
of attack, it so far appears unlikely that this technique will ever be successful against
DES or more powerful symmetric ciphers such as triple DES and AES.

3.5 BLOCK CIPHER DESIGN PRINCIPLES

Although much progress has been made in designing block ciphers that are cryp-
tographically strong, the basic principles have not changed all that much since the
work of Feistel and the DES design team in the early 1970s. In this section we look
at three critical aspects of block cipher design: the number of rounds, design of the
function F, and key scheduling.

9At least, no one has publicly acknowledged such a discovery.

79

The cryptographic strength of a Feistel cipher derives from three aspects of the
design: the number of rounds, the function F, and the key schedule algorithm. Let
us look first at the choice of the number of rounds.

The greater the number of rounds, the more difficult it is to perform crypt-
analysis, even for a relatively weak F. In general, the criterion should be that the
number of rounds is chosen so that known cryptanalytic efforts require greater
effort than a simple brute-force key search attack. This criterion was certainly used
in the design of DES. Schneier [SCHN96] observes that for 16-round DES, a differ-
ential cryptanalysis attack is slightly less efficient than brute force: The differential
cryptanalysis attack requires 2> operations,'!’ whereas brute force requires 2%. If
DES had 15 or fewer rounds, differential cryptanalysis would require less effort
than a brute-force key search.

This criterion is attractive, because it makes it easy to judge the strength of
an algorithm and to compare different algorithms. In the absence of a cryptana-
lytic breakthrough, the strength of any algorithm that satisfies the criterion can be
judged solely on key length.

The heart of a Feistel block cipher is the function F, which provides the element
of confusion in a Feistel cipher. Thus, it must be difficult to “unscramble” the
substitution performed by F. One obvious criterion is that F be nonlinear, as we
discussed previously. The more nonlinear F, the more difficult any type of crypt-
analysis will be. There are several measures of nonlinearity, which are beyond
the scope of this book. In rough terms, the more difficult it is to approximate F
by a set of linear equations, the more nonlinear F is.

Several other criteria should be considered in designing F. We would like the
algorithm to have good avalanche properties. Recall that, in general, this means that
a change in one bit of the input should produce a change in many bits of the output.
A more stringent version of this is the strict avalanche criterion (SAC) [WEBSS86],
which states that any output bit j of an S-box (see Appendix S for a discussion of
S-boxes) should change with probability 1/2 when any single input bit i is inverted
for all i, j. Although SAC is expressed in terms of S-boxes, a similar criterion could
be applied to F as a whole. This is important when considering designs that do not
include S-boxes.

Another criterion proposed in [WEBSS86] is the bit independence criterion
(BIC), which states that output bits j and k should change independently when any
single input bit i is inverted for all i, j, and k. The SAC and BIC criteria appear to
strengthen the effectiveness of the confusion function.

ODifferential cryptanalysis of DES requires 2*7 chosen plaintext. If all you have to work with is known
plaintext, then you must sort through a large quantity of known plaintext—ciphertext pairs looking for the
useful ones. This brings the level of effort up to 2°>!.

80

With any Feistel block cipher, the key is used to generate one subkey for each
round. In general, we would like to select subkeys to maximize the difficulty of
deducing individual subkeys and the difficulty of working back to the main key. No
general principles for this have yet been promulgated.

Adams suggests [ADAMY94] that, at minimum, the key schedule should
guarantee key/ciphertext Strict Avalanche Criterion and Bit Independence
Criterion.

There is a wealth of information on symmetric encryption. Some of the more worthwhile
references are listed here. An essential reference work is [SCHN96]. This remarkable
work contains descriptions of virtually every cryptographic algorithm and protocol pub-
lished up to the time of the writing of the book. The author pulls together results from
journals, conference proceedings, government publications, and standards documents and
organizes these into a comprehensive and comprehensible survey. Another worthwhile
and detailed survey is [MENE97]. A rigorous mathematical treatment is [STINO6].

The foregoing references provide coverage of public-key as well as symmetric
encryption.

Perhaps the most detailed description of DES is [SIMO95]; the book also con-
tains an extensive discussion of differential and linear cryptanalysis of DES. [BARK91]
provides a readable and interesting analysis of the structure of DES and of potential
cryptanalytic approaches to DES. [EFF98] details the most effective brute-force attack
on DES. [COPP9%4] looks at the inherent strength of DES and its ability to stand up
to cryptanalysis. The reader may also find the following document useful: “The DES
Algorithm Illustrated” by J. Orlin Grabbe, which is available at this book’s Premium
Content Web site.

BARKY91 Barker, W. Introduction to the Analysis of the Data Encryption Standard
(DES). Laguna Hills, CA: Aegean Park Press, 1991.

COPPY4 Coppersmith, D. “The Data Encryption Standard (DES) and Its Strength
Against Attacks.” IBM Journal of Research and Development, May 1994.

EFF98 Electronic Frontier Foundation. Cracking DES: Secrets of Encryption Research,
Wiretap Politics, and Chip Design. Sebastopol, CA: O’Reilly, 1998.

MENE97 Menezes, A., van Oorschot, P., and Vanstone, S. Handbook of Applied
Cryptography. Boca Raton, FL: CRC Press, 1997.

SCHNY6 Schneier, B. Applied Cryptography. New York: Wiley, 1996.

SIMO95 Simovits, M. The DES: An Extensive Documentation and Evaluation. Laguna
Hills, CA: Aegean Park Press, 1995.

STINO6 Stinson, D. Cryptography: Theory and Practice. Boca Raton, FL: Chapman &
Hall, 2006.

3.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 81

3.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
avalanche effect Feistel cipher round
block cipher irreversible mapping round function
confusion key subkey
Data Encryption Standard permutation substitution
(DES) product cipher
diffusion reversible mapping

Review Questions

3.1 Why is it important to study the Feistel cipher?
3.2 What is the difference between a block cipher and a stream cipher?

3.3 Why is it not practical to use an arbitrary reversible substitution cipher of the kind
shown in Table 3.1?

3.4 What is a product cipher?
5 What is the difference between diffusion and confusion?

3.6 Which parameters and design choices determine the actual algorithm of a Feistel
cipher?
3.7 Explain the avalanche effect.

Problems

3.1 a. InSection 3.1, under the subsection on the motivation for the Feistel cipher struc-
ture, it was stated that, for a block of »n bits, the number of different reversible
mappings for the ideal block cipher is 2"!. Justify.

b. Inthatsame discussion,it was stated that for the ideal block cipher, which allows all
possible reversible mappings, the size of the key is n X 2" bits. But, if there are 2"!
possible mappings, it should take log, 2"! bits to discriminate among the different
mappings, and so the key length should be log,2"!. However, log, 2"l < n X 2".
Explain the discrepancy.

3.2 Consider a Feistel cipher composed of sixteen rounds with a block length of 128 bits

and a key length of 128 bits. Suppose that, for a given k, the key scheduling algorithm

determines values for the first eight round keys, ki, &y, . . . kg, and then sets

ky = ks, kio = kg, kiy = ke, - .. s ki = Ky

Suppose you have a ciphertext c¢. Explain how, with access to an encryption oracle,
you can decrypt ¢ and determine m using just a single oracle query. This shows that
such a cipher is vulnerable to a chosen plaintext attack. (An encryption oracle can be
thought of as a device that, when given a plaintext, returns the corresponding cipher-
text. The internal details of the device are not known to you and you cannot break
open the device. You can only gain information from the oracle by making queries to
it and observing its responses.)

3.3 Let 7 be a permutation of the integers 0, 1,2, ..., (2" — 1), such that 7(m) gives the
permuted value of m, 0 = m < 2". Put another way, 7 maps the set of n-bit integers
into itself and no two integers map into the same integer. DES is such a permutation
for 64-bit integers. We say that 7 has a fixed point at m if w(m) = m. That is, if 7 is

82

an encryption mapping, then a fixed point corresponds to a message that encrypts to
itself. We are interested in the probability that 7 has no fixed points. Show the some-
what unexpected result that over 60% of mappings will have at least one fixed point.
Consider a block encryption algorithm that encrypts blocks of length n, and let
N = 2". Say we have plaintext—ciphertext pairs P;, C; = E(K, P)), where we assume
that the key K selects one of the N! possible mappings. Imagine that we wish to find
K by exhaustive search. We could generate key K’ and test whether C; = E(K’, P)
for 1 =i =t If K' encrypts each P; to its proper C;, then we have evidence that
K = K'. However, it may be the case that the mappings E(K, -) and E(K’, -) exactly
agree on the ¢ plaintext—cipher text pairs P, C; and agree on no other pairs.

What is the probability that E(K, <) and E(K’, +) are in fact distinct mappings?

What is the probability that E(K, -) and E(K', +) agree on another ¢’ plaintext—

ciphertext pairs where 0 = t' = N — ¢?
For any block cipher, the fact that it is a nonlinear function is crucial to its security. To
see this, suppose that we have a linear block cipher EL that encrypts 128-bit blocks of
plaintext into 128-bit blocks of ciphertext. Let EL (k, m) denote the encryption of a
128-bit message m under a key k (the actual bit length of k is irrelevant). Thus,

EL(k,[m @ my]) = EL(k,m;) @ EL(k,m,)for all 128-bit patterns m,, n,

Describe how, with 128 chosen ciphertexts, an adversary can decrypt any ciphertext
without knowledge of the secret key k. (A “chosen ciphertext” means that an adver-
sary has the ability to choose a ciphertext and then obtain its decryption. Here, you
have 128 plaintext/ciphertext pairs to work with and you have the ability to chose the
value of the ciphertexts.)
Suppose the DES F function mapped every 32-bit input R, regardless of the value of
the input K, to

32-bit string of ones

bitwise complement of R
Hint: Use the following properties of the XOR operation:

What function would DES then compute?

What would the decryption look like?

A®BD®C=ADB®O)
ADPA=0
APO=A
A @ 1 = bitwise complement of A
where
A,B,C are n-bit strings of bits
0 is an n-bit string of zeros
1is an n-bit string of one

Show that DES decryption is, in fact, the inverse of DES encryption.

The 32-bit swap after the sixteenth iteration of the DES algorithm is needed to make
the encryption process invertible by simply running the ciphertext back through
the algorithm with the key order reversed. This was demonstrated in Problem 3.7.
However, it still may not be entirely clear why the 32-bit swap is needed. To demon-
strate why, solve the following exercises. First, some notation:

A|B = the concatenation of the bit strings A and B

T(R|L) = the transformation defined by the ith iteration of the encryption
algorithmfor1 =1 = 16
TD(R| L) = the transformation defined by the ith iteration of the encryption

algorithm for1 = 7 = 16

83

Ti7(R HL) = L|R, where this transformation occurs after the sixteenth iteration
of the encryption algorithm

Show that the composition TD;(IP(IP~'(T17(Ti¢(L1s|Ris))))) is equivalent to the
transformation that interchanges the 32-bit halves, L5 and R;s. That is, show that

TD(IP(IP"(T17(Ti6(L1s[Ris))))) = RusllLys

Now suppose that we did away with the final 32-bit swap in the encryption algo-
rithm. Then we would want the following equality to hold:

TDy(IP(IP"(Tie(L1s| Ri5)))) = LislRis

Does it?

Note: The following problems refer to details of DES that are described in Appendix S.

Consider the substitution defined by row 1 of S-box S; in Table S.2. Show a block
diagram similar to Figure 3.2 that corresponds to this substitution.

Compute the bits number 1, 16, 33, and 48 at the output of the first round of the
DES decryption, assuming that the ciphertext block is composed of all ones and the
external key is composed of all ones.

This problem provides a numerical example of encryption using a one-round ver-
sion of DES. We start with the same bit pattern for the key K and the plaintext,
namely:

Hexadecimal notation: 0123456789 ABCDEF

Binary notation: 0000 0001 0010 0011 0100 0101 0110 0111
1000 1001 1010 1011 1100 1101 1110 1111

Derive Kj, the first-round subkey.

Derive L, R,.

Expand R, to get E[Ry], where E['] is the expansion function of Table S.1.

Calculate A = E[R)] @ K;.

Group the 48-bit result of (d) into sets of 6 bits and evaluate the corresponding

S-box substitutions.

Concatenate the results of (e) to get a 32-bit result, B.

Apply the permutation to get P(B).

Calculate R; = P(B) @ L,,.

Write down the ciphertext.
Compare the initial permutation table (Table S.1a) with the permuted choice one
table (Table S.3b). Are the structures similar? If so, describe the similarities. What
conclusions can you draw from this analysis?
When using the DES algorithm for decryption, the 16 keys (K, Ky, ..., Kjg) are
used in reverse order. Therefore, the right-hand side of Figure S.1 is not valid for
decryption. Design a key-generation scheme with the appropriate shift schedule
(analogous to Table S.3d) for the decryption process.

Let X' be the bitwise complement of X. Prove that if the complement of the

plaintext block is taken and the complement of an encryption key is taken, then

the result of DES encryption with these values is the complement of the original

ciphertext. That is,

If Y = E(KX)
Then Y' = E(K',X')

Hint: Begin by showing that for any two bit strings of equal length, A and B,
(A®B) = A"®B.

84

Note:

It has been said that a brute-force attack on DES requires searching a key space of
2% keys. Does the result of part (a) change that?
Show that in DES the first 24 bits of each subkey come from the same subset of
28 bits of the initial key and that the second 24 bits of each subkey come from a
disjoint subset of 28 bits of the initial key.

The following problems refer to simplified DES, described in Appendix G.

Refer to Figure G.2, which depicts key generation for S-DES.

How important is the initial P10 permutation function?

How important are the two LS-1 shift functions?
The equations for the variables g and r for S-DES are defined in the section on
S-DES analysis. Provide the equations for s and ¢.
Using S-DES, decrypt the string (10100010) using the key (0111111101) by hand.
Show intermediate results after each function (IP,Fy, SW,Fg, IP_'). Then decode the
first 4 bits of the plaintext string to a letter and the second 4 bits to another letter where
we encode A through P in base 2 (i.e., A = 0000, B = 0001, ..., P = 1111). Hint: As a
midway check, after the application of SW, the string should be (00010011).

Create software that can encrypt and decrypt using a general substitution block
cipher.

Create software that can encrypt and decrypt using S-DES. Test data: use plaintext,
ciphertext, and key of Problem 3.18.

CHAPTER

BAsic CONCEPTS IN NUMBER
THEORY AND FINITE FIELDS

4.1 Divisibility and The Division Algorithm

4.2 The Euclidean Algorithm

4.3 Modular Arithmetic

4.4 Groups, Rings, and Fields

4.5 Finite Fields of the Form GF(p)

4.6 Polynomial Arithmetic

4.7 Finite Fields of the Form GF(2")

4.8 Recommended Reading

4.9 Key Terms, Review Questions, and Problems

Appendix 4A The Meaning of Mod

85

Mathematics has long been known in the printing trade as difficult, or penalty, copy
because it is slower, more difficult, and more expensive to set in type than any other
kind of copy.

— Chicago Manual of Style, University of Chicago Press,
Chicago 60637, © The University of Chicago

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Understand the concept of divisibility and the division algorithm.

Understand how to use the Euclidean algorithm to find the greatest com-
mon divisor.

Present an overview of the concepts of modular arithmetic.
Explain the operation of the extended Euclidean algorithm.
Distinguish among groups, rings, and fields.

Define finite fields of the form GF(p).

Explain the differences among ordinary polynomial arithmetic, polynomial
arithmetic with coefficients in Z,, and modular polynomial arithmetic
in GF(2").

Define finite fields of the form GF(2").

Explain the two different uses of the mod operator.

Finite fields have become increasingly important in cryptography. A number of cryp-
tographic algorithms rely heavily on properties of finite fields, notably the Advanced
Encryption Standard (AES) and elliptic curve cryptography. Other examples in-
clude the message authentication code CMAC and the authenticated encryption
scheme GCM.

This chapter provides the reader with sufficient background on the concepts of
finite fields to be able to understand the design of AES and other cryptographic algo-
rithms that use finite fields. The first three sections introduce basic concepts from num-
ber theory that are needed in the remainder of the chapter; these include divisibility,
the Euclidian algorithm, and modular arithmetic. Next comes a brief overview of the
concepts of group, ring, and field. This section is somewhat abstract; the reader may
prefer to quickly skim this section on a first reading. We are then ready to discuss finite
fields of the form GF(p), where p is a prime number. Next, we need some additional
background, this time in polynomial arithmetic. The chapter concludes with a discus-
sion of finite fields of the form GF(2"), where n is a positive integer.

The concepts and techniques of number theory are quite abstract, and it is
often difficult to grasp them intuitively without examples. Accordingly, this chapter
and Chapter 8 include a number of examples, each of which is highlighted in a
shaded box.

4.1 / DIVISIBILITY AND THE DIVISION ALGORITHM 87

4.1 DIVISIBILITY AND THE DIVISION ALGORITHM
Divisibility
We say that a nonzero b divides a if a = mb for some m, where a, b, and m are

integers. That is, b divides a if there is no remainder on division. The notation b|a
is commonly used to mean b divides a. Also, if b|a, we say that b is a divisor of a.

The positive divisors of 24 are 1,2, 3,4, 6,8, 12, and 24.
13]|182; —5|30; 17|289; —3|33;17|0

Subsequently, we will need some simple properties of divisibility for integers,
which are as follows:
o Ifa|l,thena ==1.
If a|b and b|a, thena = *b.
Any b # 0 divides 0.
If a|b and b|c, then a|c:

11|66 and 66]198 = 11]198

If b|g and b| h, then b|(mg + nh) for arbitrary integers m and n.
To see this last point, note that

o If b|g, then g is of the form g = b X g for some integer g;.
o If b|h, then h is of the form & = b X hy for some integer h;.

So
mg + nh = mbg, + nbhy = b X (mg, + nhy)

and therefore b divides mg + nh.

b=T,g=14h=63m=3n=2

7|14 and 7|63.

To show 7| (3 X 14 + 2 X 63),

we have (3 X 14 + 2 X 63) = 7(3 X 2 + 2 X 9),
and it is obvious that 7| (7(3 X 2 + 2 X 9)).

The Division Algorithm

Given any positive integer n and any nonnegative integer a, if we divide a by n, we get
an integer quotient g and an integer remainder r that obey the following relationship:

a=qn+r O0=r<mnq=|an] 4.1)

88 CHAPTER 4 / BASIC CONCEPTS IN NUMBER THEORY AND FINITE FIELDS

1

(a) General relationship r
~
| | | | | | |
[T T T T T T
0 15 30 45 60 70 75
=2x15 =3x15 =4x15 =5x15
(b) Example: 70 = (4x15) + 10 10

Figure 4.1 The Relationshipa = gn + 0 =r <n

where | x | is the largest integer less than or equal to x. Equation (4.1) is referred to
as the division algorithm.!

Figure 4.1a demonstrates that, given a and positive #, it is always possible to
find g and r that satisfy the preceding relationship. Represent the integers on the
number line; a will fall somewhere on that line (positive a is shown, a similar dem-
onstration can be made for negative a). Starting at 0, proceed to n, 2n, up to gn,
such that gn = a and(q + 1)n > a. The distance from gn to a is r, and we have
found the unique values of g and r. The remainder r is often referred to as a residue.

a = 11; n=7, 11 =1X7+ 4 r=4 qg=1
a=-11;, n=7, -11=(2)X7+3; r=3 g=-2

Figure 4.1b provides another example.

4.2 THE EUCLIDEAN ALGORITHM

One of the basic techniques of number theory is the Euclidean algorithm, which
is a simple procedure for determining the greatest common divisor of two positive
integers. First, we need a simple definition: Two integers are relatively prime if their
only common positive integer factor is 1.

Greatest Common Divisor

Recallthatnonzero bisdefinedtobe adivisorofaifa = mbforsome m,where a,b,and
m are integers. We will use the notation gcd(a, b) to mean the greatest common divisor

'Equation (4.1) expresses a theorem rather than an algorithm, but by tradition, this is referred to as the
division algorithm.

89

of a and b. The greatest common divisor of a and b is the largest integer that divides
both a and b. We also define ged(0,0) = 0.

More formally, the positive integer c is said to be the greatest common divisor
of a and b if

c is a divisor of a and of b.

Any divisor of a and b is a divisor of c.
An equivalent definition is the following:
ged(a, b) = max[k, suchthatk|a and k|b]

Because we require that the greatest common divisor be positive, ged(a, b) =
ged(a, —b) = ged(—a, b) = ged(—a,—b). In general, ged(a, b) = ged(|al, |b|).

gcd(60, 24) = ged(60, —24) = 12

Also, because all nonzero integers divide 0, we have ged(a, 0) = |a].

We stated that two integers a and b are relatively prime if their only common
positive integer factor is 1. This is equivalent to saying that a and b are relatively
prime if gcd(a, b) = 1.

8 and 15 are relatively prime because the positive divisors of 8 are 1,2,4,and 8, and
the positive divisors of 15 are 1,3, 5, and 15. So 1 is the only integer on both lists.

We now describe an algorithm credited to Euclid for easily finding the great-
est common divisor of two integers. This algorithm has significance subsequently
in this chapter. Suppose we have integers a, b such that d = ged(a, b). Because
ged(|al, |b|) = gcd(a, b), there is no harm in assuming a = b > 0. Now dividing a
by b and applying the division algorithm, we can state:

a=qb+r, 0=r<b 4.2)

If it happens that r; = 0, then b|aandd = gcd(a, b) = b.Butifr; # 0, we can state
that d| r;. This is due to the basic properties of divisibility: the relations d|a and d| b
together imply that d|(a — gq;b), which is the same as d|r;. Before proceeding with
the Euclidian algorithm, we need to answer the question: What is the ged(b, r{)?
We know that d|b and d|r;. Now take any arbitrary integer c¢ that divides both b
and ry. Therefore, c|(q;b + r;) = a. Because c divides both a and b, we must have
¢ = d, which is the greatest common divisor of a and b. Therefore d = ged(b, ry).

Let us now return to Equation (4.2) and assume that r; # 0. Because b > ry,
we can divide b by rjand apply the division algorithm to obtain:

b=q2r1+r2 OSr2<r1

As before, if r, = 0, then d = r; and if r, # 0, then d = ged(ry, r,). The divi-
sion process continues until some zero remainder appears, say, at the (n + 1)th

90

stage where r,_; is divided by r,. The result is the following system of
equations:

a=qb+nr 0<r<b)
b=q2r1+r2 0<r2<r1
r1=q3r2+r3 0<r3<r2
. . .3)
rn72:ann71+rn O<rn<rn71
'n-1 = 4n+1tn +0
d = ged(a,b) = r,)

At each iteration, we have d = gcd(r;, r;41) until finally d = gcd(r,, 0) = r,,.
Thus, we can find the greatest common divisor of two integers by repetitive applica-
tion of the division algorithm. This scheme is known as the Euclidean algorithm.

We have essentially argued from the top down that the final result is the
gcd(a, b). We can also argue from the bottom up. The first step is to show that r,
divides a and b. It follows from the last division in Equation (4.3) that r,, divides r,,_;.
The next to last division shows that r, divides r,_, because it divides both terms
on the right. Successively, one sees that r, divides all r;’s and finally a and b. It
remains to show that r, is the largest divisor that divides a and b. If we take any arbi-
trary integer that divides a and b, it must also divide r{, as explained previously. We
can follow the sequence of equations in Equation (4.3) down and show that ¢ must
divide all r;’s. Therefore ¢ must divide r,, so that r, = gcd(a, b).

Let us now look at an example with relatively large numbers to see the power
of this algorithm:

Tofindd = ged (a,b) = ged (1160718174,316258250)

a=qb +r |1160718174 = 3 X 316258250 + 211943424 | d = gcd (316258250,
211943424)

b=qr +rnr, 316258250 = 1 X 211943424 + 104314826 | d = gcd(211943424,
104314826)

= qsr; + 13 211943424 = 2 X 104314826 + 3313772 | d = gcd(104314826,
3313772)

ry=qus +ry | 104314826 = 31 x 3313772 + 1587894 |d = ged (3313772,
1587894)

r3 = sty + 15 3313772 = 2 X 1587894 + 137984 | d = gcd(1587894,
137984)

Fa = Qs + 1 1587894 = 11 x 137984 + 70070 | d = ged(137984,70070)

rs = qorg + 1y 137984 = 1 X 70070 + 67914 |d = gcd(70070,67914)

re = qgrs + 1y 70070 = 1 X 67914 + 2156 | d = gcd(67914, 2156)

7 = qorg + ro 67914 = 31 X 2516 + 1078 |d = ged(2156, 1078)

rg = {1079 + 1o 2156 = 2 X 1078 + 0 d= ng(1078, 0) = 1078

Therefore, d = ged(1160718174, 316258250) = 1078

4.3 / MODULAR ARITHMETIC 91

Table 4.1 Euclidean Algorithm Example

Dividend Divisor Quotient Remainder
a = 1160718174 b = 316258250 g = 3 ry = 211943424
b = 316258250 ry = 211943434 g =1 r, = 104314826
r = 211943424 r, = 104314826 g = 2 rs = 3313772
r, = 104314826 ry = 3313772 qs = 31 ry = 1587894
= 3313772 re= 1587894 gs= 2 rs= 137984
ra= 1587894 rs= 137984 g5 = 11 re= 70070
7= 137984 re= 70070 = il rm= 67914
re = 70070 rm= 67914 gs= 1 ry = 2156
= 67914 re = 2156 go = 31 ro = 1078
rg= 2156 rg = 1078 qio = 2 ro = 0

In this example, we begin by dividing 1160718174 by 316258250, which gives 3
with a remainder of 211943424. Next we take 316258250 and divide it by 211943424.
The process continues until we get a remainder of 0, yielding a result of 1078.

It will be helpful in what follows to recast the above computation in tabular
form. For every step of the iteration, we have r;_, = q;7;—1 + r;, where r;_, is the
dividend, ;_ is the divisor, g; is the quotient, and r; is the remainder. Table 4.1 sum-
marizes the results.

4.3 MODULAR ARITHMETIC

The Modulus

If a is an integer and 7 is a positive integer, we define a mod n to be the remainder
when a is divided by n. The integer # is called the modulus. Thus, for any integer a,
we can rewrite Equation (4.1) as follows:

a=gqn+r 0=r<mn;q=lan]

a=lan| X n+ (amod n)

11 mod 7 = 4; —11mod7 =3

Two integers a and b are said to be congruent modulo n, if (¢ mod n) =
(b mod n). This is written as @ = b (modn).?

73 = 4 (mod 23); 21 = —9 (mod 10)

Note that if a = 0 (mod n), then n|a.

2We have just used the operator mod in two different ways: first as a binary operator that produces a
remainder, as in the expression a mod b; second as a congruence relation that shows the equivalence of
two integers, as in the expression a = b(mod n). See Appendix 4A for a discussion.

92

Congruences have the following properties:
a = b (mod n) if n|(a — b).
a = b (mod n) implies b = a (mod n).
a = b (mod n) and b = ¢ (mod n) imply a = ¢ (mod n).
To demonstrate the first point, if n|(a — b), then (a — b) = kn for some k.

So we can write a = b + kn. Therefore, (¢ mod n) = (remainder when b + kn is
divided by n) = (remainder when b is divided by n) = (b mod n).

23 = 8 (mod5) because 23 -8 =15=5X3
—11 = 5(mod 8) because —11 —5= —16 =8 X (=2)
81 = 0 (mod27) Dbecause 81 — 0 =81 =27 X3

The remaining points are as easily proved.

Note that, by definition (Figure 4.1), the (mod ») operator maps all integers into
the set of integers {0, 1, ..., (n — 1)}. This suggests the question: Can we perform
arithmetic operations within the confines of this set? It turns out that we can; this
technique is known as modular arithmetic.
Modular arithmetic exhibits the following properties:
[(a mod n) + (bmodn)]modn = (a + b) mod n
[(amod n) — (bmodn)lmodn = (a — b) mod n
[(amod n) X (bmodn)]modn = (a X b) mod n
We demonstrate the first property. Define (¢ mod n) = r,and (b mod n) = r,.
Then we can write a = r, + jn for some integer jand b = r, + kn for some integer
k. Then
(a + b)ymodn = (r, + jn + r, + kn) mod n
=(r, +r, + (k + j)n)modn
= (r, + rp) modn
= [(amod n) + (b mod n)] mod n
The remaining properties are proven as easily. Here are examples of the three
properties:

11 mod8 = 3;15mod 8 = 7

[(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2
(11 + 15) mod 8 = 26 mod 8 = 2

[(11 mod 8) — (15 mod 8)] mod 8 = —4mod 8 = 4
(11 — 15) mod 8 = =4 mod 8 = 4

[(11 mod 8) X (15 mod 8)] mod 8 = 21 mod 8 = 5
(11 X 15) mod 8 = 165mod 8 = 5

93

Exponentiation is performed by repeated multiplication, as in ordinary arith-
metic. (We have more to say about exponentiation in Chapter 8.)

To find 117 mod 13, we can proceed as follows:
112 = 121 = 4 (mod13)
11* = (1) = 42 = 3 (mod 13)
117 =11 X 4 X 3 = 132 = 2 (mod 13)

Thus, the rules for ordinary arithmetic involving addition, subtraction, and
multiplication carry over into modular arithmetic.

Table 4.2 provides an illustration of modular addition and multiplication
modulo 8. Looking at addition, the results are straightforward, and there is a regu-
lar pattern to the matrix. Both matrices are symmetric about the main diagonal
in conformance to the commutative property of addition and multiplication. As
in ordinary addition, there is an additive inverse, or negative, to each integer in
modular arithmetic. In this case, the negative of an integer x is the integer y such
that (x + y) mod 8 = 0. To find the additive inverse of an integer in the left-hand
column, scan across the corresponding row of the matrix to find the value 0; the

Arithmetic Modulo 8

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7

1 1 2 3 4 5 6 7 0

2 2 3 4 5 6 7 0 1

3 3 4 5 6 7 0 1 2

4 4 5 6 7 0 1 2 3

5 5 6 7 0 1 2 3 4

6 6 7 0 1 2 3 4 5

7 7 0 1 2 3 4 5 6

(a) Addition modulo 8
X 0 1 2 3 4 5 6 7 w -w w!
0 0 0 0 0 0 0 0 0 0 0 —
1 0 1 2 3 4 5 6 7 1 7 1
2 0 2 4 6 0 2 4 6 2 6 —
3 0 3 6 1 4 7 2 5 3 5 3
4 0 4 0 4 0 4 0 4 4 4 -
5 0 5 2 7 4 1 6 3 5 3 5
6 0 6 4 2 0 6 4 2 6 2 —
7 0 7 6 5 4 3 2 1 7 1 7
(b) Multiplication modulo 8 (c) Additive and multiplicative

inverse modulo 8

94

integer at the top of that column is the additive inverse; thus, (2 + 6) mod 8 = 0.
Similarly, the entries in the multiplication table are straightforward. In ordinary
arithmetic, there is a multiplicative inverse, or reciprocal, to each integer. In mod-
ular arithmetic mod 8, the multiplicative inverse of x is the integer y such that
(x X y) mod 8 = 1 mod 8. Now, to find the multiplicative inverse of an integer
from the multiplication table, scan across the matrix in the row for that integer to
find the value 1; the integer at the top of that column is the multiplicative inverse;
thus, (3 X 3) mod 8 = 1. Note that not all integers mod 8 have a multiplicative
inverse; more about that later.

Define the set Z,, as the set of nonnegative integers less than n:
Z,=1{0,1,...,(n — 1)}

This is referred to as the set of residues, or residue classes (mod 7). To be more pre-
cise, each integer in Z,, represents a residue class. We can label the residue classes
(mod n)as[0],[1], [2], ..., [n — 1], where

[r] = {a: ais an integer, a = r (mod n)}

The residue classes (mod 4) are
[0] ={...,—16,—12,-8,-4,0,4,8,12,16, ...}
] ={...,-15,-11,-7,-3,1,5,9,13,17, . . . }
2] ={...,—14,-10, -6, -2,2,6,10,14,18, ...}
B]1={...,-13,-9,-5,-1,3,7,11,15,19, .. . }

Of all the integers in a residue class, the smallest nonnegative integer is the
one used to represent the residue class. Finding the smallest nonnegative integer to
which k is congruent modulo # is called reducing k£ modulo n.

If we perform modular arithmetic within Z,,, the properties shown in Table 4.3
hold for integers in Z,,. We show in the next section that this implies that Z,, is a com-
mutative ring with a multiplicative identity element.

Properties of Modular Arithmetic for Integers in Z,,

Property Expression

(w + x)modn = (x + w) mod n

Commutative Laws
(w X x)modn = (x X w) mod n

[Ww+x) + ylmodn = [w + (x + y)] mod n

Associative Laws [(w X x) X yJmodn = [w X (x X y)] mod n
Distributive Law [wX (x + y)]modn = [(w X x) + (w X y)] mod n
Identities (0 + w)ymodn = wmod n

(1 X w)ymodn = wmod n

Additive Inverse (—w) For each w € Z,, there exists a z such that w + z = Omod n

95

There is one peculiarity of modular arithmetic that sets it apart from ordinary
arithmetic. First, observe that (as in ordinary arithmetic) we can write the following:

if (a + b) = (a + ¢) (mod n) then b = ¢ (mod n) 4.4

(5 +23) = (5 + 7)(mod8); 23 = 7(mod8)

Equation (4.4) is consistent with the existence of an additive inverse. Adding
the additive inverse of a to both sides of Equation (4.4), we have
((a) +a+b)=((—a) +a+ c)(modn)
b = ¢ (mod n)
However, the following statement is true only with the attached condition:
if (a X b) = (a X ¢)(mod n) then b = c(mod n) if aisrelatively primeton (4.5)

Recall that two integers are relatively prime if their only common positive integer
factor is 1. Similar to the case of Equation (4.4), we can say that Equation (4.5) is
consistent with the existence of a multiplicative inverse. Applying the multiplicative
inverse of a to both sides of Equation (4.5), we have

((a™")ab) = ((a")ac) (modn)
b = c(modn)

To see this, consider an example in which the condition of Equation (4.5) does
not hold. The integers 6 and 8 are not relatively prime, since they have the com-
mon factor 2. We have the following:

6 X 3 =18 = 2(mod8)
6 X 7 =42 = 2(mod8)
Yet 3 = 7 (mod 8).

The reason for this strange result is that for any general modulus », a multi-
plier a that is applied in turn to the integers 0 through (n — 1) will fail to produce a
complete set of residues if @ and n have any factors in common.

Witha = 6 and n = 8,

Z3 0o 1 2 3 4 5 6 7
Multiplyby6 0 6 12 18 24 30 36 42
Residues 0 6 4 2 0 6 4 2

Because we do not have a complete set of residues when multiplying by 6, more
than one integer in Zg maps into the same residue. Specifically, 6 X 0 mod 8 =
6 X 4mod 8;6 X 1 mod 8 = 6 X 5 mod8; and so on. Because this is a many-to-
one mapping, there is not a unique inverse to the multiply operation.

(Continued)

96

(Continued)
However, if we take a = 5 and n = 8, whose only common factor is 1,
Zg o 1 2 3 4 5 6 7
MultiplybyS 0 5 10 15 20 25 30 35
Residues 0O 5 2 7 4 1 6 3

The line of residues contains all the integers in Zg, in a different order.

In general, an integer has a multiplicative inverse in Z,, if that integer is rela-
tively prime to n. Table 4.2c shows that the integers 1, 3, 5, and 7 have a multiplicative
inverse in Zg; but 2, 4, and 6 do not.

The Euclidean algorithm can be based on the following theorem: For any integers
a, b,witha = b = 0,

gcd(a, b) = ged(b, a mod b) (4.6)

gcd(55,22) = ged(22,55 mod 22) = ged(22,11) = 11

To see that Equation (4.6) works, let d = gcd(a, b). Then, by the definition of
gcd, d|a and d | b. For any positive integer b, we can express a as

a = kb + r =r(modb)
amodb =r

with k, r integers. Therefore, (a mod b) = a — kb for some integer k. But because
d | b, it also divides kb. We also have d | a. Therefore, d | (a mod b). This shows that
d is a common divisor of b and (a mod b). Conversely, if d is a common divisor of b
and (a mod b), then d | kb and thus d | [kb + (a mod b)], which is equivalent to d | a.
Thus, the set of common divisors of a and b is equal to the set of common divisors
of b and (a mod b). Therefore, the gcd of one pair is the same as the gcd of the other
pair, proving the theorem.

Equation (4.6) can be used repetitively to determine the greatest common
divisor.

gcd(18,12) = ged(12, 6) = ged(6,0) = 6
ged(11, 10) = ged(10,1) = ged(1,0) = 1

This is the same scheme shown in Equation (4.3), which can be rewritten in the
following way.

97

Euclidean Algorithm
Calculate Which satisfies
r1=amodb a=q1b+r1
r, = bmod ry b=gqy +n,
r3=r1m0dr2 r1=q3r2+r3
[[]
[] []
° []
rn:ranmOdrnfl rn72:CInrn71+rn
rn-H:rn—]mOdrn:O ranZQnJrlrn—i_O
d = gcd(a,b) = r,

We can define the Euclidean algorithm concisely as the following recursive function.
Euclid(a,b)

if (b=0) then return a;

else return Euclid(b, a mod b);

We now proceed to look at an extension to the Euclidean algorithm that will be
important for later computations in the area of finite fields and in encryption algo-
rithms, such as RSA. For given integers a and b, the extended Euclidean algorithm
not only calculate the greatest common divisor d but also two additional integers x
and y that satisfy the following equation.

ax + by = d = gecd(a, b) 4.7
It should be clear that x and y will have opposite signs. Before examining the

algorithm, let us look at some of the values of x and y when a = 42 and b = 30.
Note that ged(42, 30) = 6. Here is a partial table of values® for 42x + 30y.

X -3 -2 -1 0 1 2 3
y
-3 —216 —174 —132 —90 —48 —6 36
-2 —186 —144 —102 —60 —18 24 66
-1 —156 —114 =72 —30 12 54 96
0 —126 —84 —42 0 42 84 126
1 —96 —54 —12 30 72 114 156
2 —66 —24 18 60 102 144 186
3 —36 6 48 90 132 174 216

Observe that all of the entries are divisible by 6. This is not surpris-
ing, because both 42 and 30 are divisible by 6, so every number of the form
42x + 30y = 6(7x + Sy) is a multiple of 6. Note also that gcd(42, 30) = 6 appears
in the table. In general, it can be shown that for given integers a and b, the smallest
positive value of ax + by is equal to gcd(a, b).

3This example is taken from [SILV06].

98 CHAPTER 4 / BASIC CONCEPTS IN NUMBER THEORY AND FINITE FIELDS

Now let us show how to extend the Euclidean algorithm to determine (x, y, d)
given a and b. We again go through the sequence of divisions indicated in Equation
(4.3), and we assume that at each step i we can find integers x; and y; that satisfy
r; = ax; + by;. We end up with the following sequence.

a=qb+n ry = ax; + by,
b=qr +nr ry, = ax; + by,
ri = qsr + r3 r3 = axs + by3
rn72:CInrn71+rn rn:axn+byn

n-1 = 4n+1tn +0

Now, observe that we can rearrange terms to write

Fi = Fi—p = ri—14; 4.8)
Also,inrows i — 1 and i — 2, we find the values
riep = axip + by;—» and riy = ax;y + by,
Substituting into Equation (4.8), we have
ri = (axj—5 + by;») — (ax;—y + byi-1)q;
= a(xi—> — qgX-1) + b2 — qyi-1)
But we have already assumed that r; = ax; + by;. Therefore,
X =Xy — gxi—1 and y; = Yo — gy
We now summarize the calculations:
Extended Euclidean Algorithm
Calculate Which satisfies Calculate Which satisfies
r.1=a x1=1y1=0 a=ax_y + by_;
ro=>b X =0y =1 b =axy + by,
ry = amod b a=qb+rn Xy =x_1— qix =1 r = ax; + by,
91 = [a/bj V1 =Y-1 4910 = 1
r, = bmod rq b=gqy + 1, X = Xy — g r, = ax, + by,
q = | bir] Y2 = Yo — o)
r3=r1m0dr2 ry =q3r2+r3 X3 = X1 — (3% r3=aX3+ by3
qs = | rir,) V3=V T @3

r, = r,—pomodr,
qn = [rn—Z/rn—1J

"n—2 = qn'n—1 + I'n

Xn = Xn—2 = GnXn—1
Yn = Yn-2 = qn¥n-1

r, = ax, + by,

Fpi1 = rpogmodr, =0
dn+1 = I.rnfl/rnj

"n-1 = 4n+1"n +0

d = ged(a,b) =1,
X = XY = Yn

4.4 / GROUPS, RINGS,

Table 4.4 Extended Euclidean Algorithm Example

AND FIELDS 99

i ri qi Xi yi
=1l 1759 1 0

0 550 0 1

1 109 1 -3

2 5 -5 16

3 4 21 106 —339

4 1 1 —111 355

5 0 4

Result:d = 1;x = —111;y = 355

We need to make several additional comments here. In each row, we calculate
a new remainder r; based on the remainders of the previous two rows, namely r;_;
and r;_,.To start the algorithm, we need values for 7y and r_y, which are just a and b.
It is then straightforward to determine the required values for x_;, y_1, X, and y;.

We know from the original Euclidean algorithm that the process ends with
a remainder of zero and that the greatest common divisor of a and b is
d = gcd(a, b) = r,. But we also have determined that d = r, = ax, + by,.
Therefore, in Equation (4.7), x = x,and y = y,,.

As an example, let us use a = 1759 and b = 550 and solve for
1759x + 550y = gcd(1759, 550). The results are shown in Table 4.4. Thus, we have
1759 X (—=111) + 550 X 355= —195249 + 195250 = 1.

4.4 GROUPS, RINGS, AND FIELDS

Groups, rings, and fields are the fundamental elements of a branch of mathematics
known as abstract algebra, or modern algebra. In abstract algebra, we are concerned
with sets on whose elements we can operate algebraically; that is, we can combine
two elements of the set, perhaps in several ways, to obtain a third element of the set.
These operations are subject to specific rules, which define the nature of the set. By
convention, the notation for the two principal classes of operations on set elements
is usually the same as the notation for addition and multiplication on ordinary num-
bers. However, it is important to note that, in abstract algebra, we are not limited to
ordinary arithmetical operations. All this should become clear as we proceed.

Groups

A group G, sometimes denoted by {G, -}, is a set of elements with a binary opera-
tion denoted by - that associates to each ordered pair (g, b) of elements in G an ele-
ment (a + b) in G, such that the following axioms are obeyed:*

(A1) Closure:
(A2) Associative:

If a and b belong to G, then a « b is also in G.
as(+c)=(a*b)-cforalla,b,cinG.

“The operator ® is generic and can refer to addition, multiplication, or some other mathematical operation.

100

(A3) Identity element: There is an element e in G such
thata+e = e+a =aforallainG.

(A4) Inverse element: For each ¢ in G, there is an element a’ in G
suchthata+a’ = a’'+a = e.

Let N,, denote a set of n distinct symbols that, for convenience, we represent as
{1,2, ..., n}. A permutation of n distinct symbols is a one-to-one mapping from
N, to N,,.5 Define S, to be the set of all permutations of # distinct symbols. Each
element of S, is represented by a permutation of the integers 7 in 1,2, ..., n.
It is easy to demonstrate that S, is a group:

Al: If (7, p €8,), then the composite mapping 7 * p is formed by per-
muting the elements of p according to the permutation n. For ex-
ample, {3,2, 1} + {1, 3,2} = {2, 3, 1}. Clearly, 7w - p €,

A2: The composition of mappings is also easily seen to be associative.

A3: The identity mapping is the permutation that does not alter the
order of the n elements. For S, the identity element is {1, 2, . . . , n}.
A4: For any 7 e S, the mapping that undoes the permutation defined

by 7 is the inverse element for 7r. There will always be such an
inverse. For example {2, 3, 1} - {3, 1,2} = {1, 2, 3}.

If a group has a finite number of elements, it is referred to as a finite group, and
the order of the group is equal to the number of elements in the group. Otherwise,
the group is an infinite group.

A group is said to be abelian if it satisfies the following additional condition:

(AS) Commutative: a*b=>b-aforalla,binG.

The set of integers (positive, negative, and 0) under addition is an abelian group.
The set of nonzero real numbers under multiplication is an abelian group.
The set S, from the preceding example is a group but not an abelian group
forn > 2.

When the group operation is addition, the identity element is 0; the inverse ele-
ment of a is —a; and subtraction is defined with the following rule:a — b = a + (—b).

We define exponentiation within a group as a repeated application
of the group operator, so that a®> = a + a + a. Furthermore, we define a’ = e as the
identity element, and a™" = (a')", where a’ is the inverse element of a within the
group. A group G is cyclic if every element of G is a power a* (k is an integer) of

SThis is equivalent to the definition of permutation in Chapter 2, which stated that a permutation of a
finite set of elements S is an ordered sequence of all the elements of S, with each element appearing
exactly once.

101

a fixed element a € G. The element a is said to generate the group G or to be a
generator of G. A cyclic group is always abelian and may be finite or infinite.

The additive group of integers is an infinite cyclic group generated by the element 1.
In this case, powers are interpreted additively, so that 7 is the nth power of 1.

A ring R, sometimes denoted by {R, +, X}, is a set of elements with two binary
operations, called addition and multiplication,6 such that for all a, b, ¢ in R the fol-
lowing axioms are obeyed.

(A1-A5) R is an abelian group with respect to addition; that is, R satisfies
axioms Al through AS. For the case of an additive group, we denote
the identity element as 0 and the inverse of a as —a.

(M1) Closure under multiplication: If a and b belong to R, then ab is also in R.

(M2) Associativity of multiplication: a(bc) = (ab)c for all a, b, cin R.

(M3) Distributive laws: a(b + ¢) = ab + acforalla, b, cin R.
(a + b)c = ac + bcforalla, b, cin R.

In essence, a ring is a set in which we can do addition, subtraction
[@a — b = a + (—b)], and multiplication without leaving the set.

With respect to addition and multiplication, the set of all n-square matrices over
the real numbers is a ring.

Aringis said to be commutative if it satisfies the following additional condition:

(M4) Commutativity of multiplication: ab = ba for all a, b in R.

Let S be the set of even integers (positive, negative, and 0) under the usual opera-
tions of addition and multiplication. S is a commutative ring. The set of all n-square
matrices defined in the preceding example is not a commutative ring.

The set Z,, of integers {0, 1, . .. , n — 1}, together with the arithmetic opera-
tions modulo #, is a commutative ring (Table 4.3).

Next, we define an integral domain, which is a commutative ring that obeys
the following axioms.

(MS) Multiplicative identity: There is an element 1 in R such that
al = la = aforallain R.

(M6) No zero divisors: Ifa, b in R and ab = 0, then eithera = 0
orb = 0.

%Generally, we do not use the multiplication symbol, X, but denote multiplication by the concatenation
of two elements.

102

Let S be the set of integers, positive, negative, and 0, under the usual operations

of addition and multiplication. S is an integral domain.

A field F, sometimes denoted by {F, +, X}, is a set of elements with two binary op-
erations, called addition and multiplication, such that for all a, b, c in F the following
axioms are obeyed.

(A1-M6) F is an integral domain; that is, F satisfies axioms A1 through AS and
M1 through M6.

(M7) Multiplicative inverse: For each a in F, except 0, there is an element
a 'in Fsuch thataa™' = (a V)a = 1.

In essence, a field is a set in which we can do addition, subtraction, multiplica-
tion, and division without leaving the set. Division is defined with the following rule:
alb = a(b™h).

Familiar examples of fields are the rational numbers, the real numbers, and the
complex numbers. Note that the set of all integers is not a field, because not every
element of the set has a multiplicative inverse;in fact, only the elements 1 and —1
have multiplicative inverses in the integers.

Figure 4.2 summarizes the axioms that define groups, rings, and fields.

In Section 4.4, we defined a field as a set that obeys all of the axioms of Figure 4.2
and gave some examples of infinite fields. Infinite fields are not of particular inter-
est in the context of cryptography. However, finite fields play a crucial role in many
cryptographic algorithms. It can be shown that the order of a finite field (number of
elements in the field) must be a power of a prime p", where n is a positive integer.
We discuss prime numbers in detail in Chapter 8. Here, we need only say that a
prime number is an integer whose only positive integer factors are itself and 1. That
is, the only positive integers that are divisors of p are p and 1.

The finite field of order p” is generally written GF(p"); GF stands for Galois
field, in honor of the mathematician who first studied finite fields. Two special cases
are of interest for our purposes. For n = 1, we have the finite field GF(p); this finite
field has a different structure than that for finite fields with » > 1 and is studied in
this section. In Section 4.7, we look at finite fields of the form GF(2").

For a given prime, p, we define the finite field of order p, GF(p), as the set Z,, of
integers {0, 1, ..., p — 1} together with the arithmetic operations modulo p.

103

FIELD
(A1) Closure under addition: If @ and b belong to S, then a + b is also in S
(A2) Associativity of addition: a+(b+c)=(@+b)+cforalla,b,cinS
(A3) Additive identity: There is an element 0 in R such that
a+0=0+a=aforallain$
(A4) Additive inverse: For each a in S there is an element —a in S

suchthata + (—a)=(—a)+a =0

Integral Domain
(AS) Commutativity of addition: a+b=>b+aforalla,bin$§

Commutative Ring
(M1) Closure under multiplication: If a and b belong to S, then ab is also in S
(M2) Associativity of multiplication: a(bc) = (ab)c for all a, b, ¢ in S
(M3) Distributive laws: alb+c)=ab+acforalla,b,cin§
(a+b)c=ac+bcforalla,b,cin§

Ring
(M4) Commutativity of multiplication: ab=baforalla,bin S

Abelian Group

(M5) Multiplicative identity: There is an element 1 in S such that
al=la=aforallain §

(M6) No zero divisors: If a, b in S and ab = 0, then either
a=0o0rb=0

Group
(M7) Multiplicative inverse: If a belongs to S and a # 0, there is an
element a-! in S such that aa-! = a-la=1

Group, Ring, and Field

Recall that we showed in Section 4.3 that the set Z, of integers
{0,1,...,n — 1}, together with the arithmetic operations modulo n, is a commuta-
tive ring (Table 4.3). We further observed that any integer in Z, has a multiplica-
tive inverse if and only if that integer is relatively prime to n [see discussion of
Equation (4.5)].” If n is prime, then all of the nonzero integers in Z,, are relatively
prime to n, and therefore there exists a multiplicative inverse for all of the nonzero
integers in Z,,. Thus, for Z,, we can add the following properties to those listed in
Table 4.3:

Multiplicative ForeachweZ, w # 0, there exists a
inverse (w 1) zeZ,suchthatw X z = 1 (mod p)

Because w is relatively prime to p, if we multiply all the elements of Z, by w,
the resulting residues are all of the elements of Z, permuted. Thus, exactly one
of the residues has the value 1. Therefore, there is some integer in Z, that, when
multiplied by w, yields the residue 1. That integer is the multiplicative inverse of w,
designated w~!. Therefore, Z, is in fact a finite field. Furthermore, Equation (4.5)

7As stated in the discussion of Equation (4.5), two integers are relatively prime if their only common
positive integer factor is 1.

104

is consistent with the existence of a multiplicative inverse and can be rewritten with-
out the condition:

if (a X b) = (a X ¢)(mod p) then b = ¢ (mod p) 4.9)
Multiplying both sides of Equation (4.9) by the multiplicative inverse of a, we have
(@) X axb)=((a') X a X c)(modp)
b = ¢ (mod p)

The simplest finite field is GF(2). Its arithmetic operations are easily summarized:

+]0 1 X0 1 w|-w w'!
00 1 0(0 O 0| O -
111 0 110 1 11 1 1
Addition Multiplication Inverses

In this case, addition is equivalent to the exclusive-OR (XOR) operation, and
multiplication is equivalent to the logical AND operation.

Table 4.5 shows arithmetic operations in GF(7). This is a field of order 7 using
modular arithmetic modulo 7 As can be seen, it satisfies all of the properties re-
quired of a field (Figure 4.2). Compare this table with Table 4.2. In the latter case,
we see that the set Zg, using modular arithmetic modulo 8, is not a field. Later in
this chapter, we show how to define addition and multiplication operations on Zg
in such a way as to form a finite field.

It is easy to find the multiplicative inverse of an element in GF(p) for small values
of p. You simply construct a multiplication table, such as shown in Table 4.5b, and
the desired result can be read directly. However, for large values of p, this approach
is not practical.

If @ and b are relatively prime, then b has a multiplicative inverse modulo a.
That is, if ged(a, b) = 1, then b has a multiplicative inverse modulo a. That is, for
positive integer b < a, there exists a b~! < a such that bb~! = I moda. Ifais a
prime number and b < q, then clearly a and b are relatively prime and have a great-
est common divisor of 1. We now show that we can easily compute b~ ! using the
extended Euclidean algorithm.

We repeat here Equation (4.7), which we showed can be solved with the ex-
tended Euclidean algorithm:

ax + by = d = gcd(a, b)

Now, if ged(a, b) = 1, then we have ax + by = 1. Using the basic equalities of
modular arithmetic, defined in Section 4.3, we can say

[(ax mod a) + (by mod a)] moda = 1 moda
0+ (bymoda) =1

105

Arithmetic in GF(7)

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

(a) Addition modulo 7
w -w oyl

X 0 1 2 3 4 5 6 0 0 —
0 0 0 0 0 0 0 0 1 6 1

1 0 1 2 3 4 5 6 2 5 4
2 0 2 4 6 1 3 5 3 4 5
3 0 3 6 2 5 1 4 4 3 5
4 0 4 1 5 2 6 3 5 5 3
5 0 5 3 1 6 4 2 6 1 6
6 0 6 5 4 3 2 1 . s

(c) Additive and multiplicative
(b) Multiplication modulo 7 inverses modulo 7

But if by mod a = 1, then y = b™!. Thus, applying the extended Euclidean
algorithm to Equation (4.7) yields the value of the multiplicative inverse of b if
gcd(a, b) = 1. Consider the example that was shown in Table 4.4. Here we have
a = 1759, which is a prime number, and b = 550. The solution of the equation
1759x + 550y = d yields a value of y = 355. Thus, b~! = 355. To verify, we calcu-
late 550 X 355 mod 1759 = 195250 mod 1759 = 1.

More generally, the extended Euclidean algorithm can be used to find a
multiplicative inverse in Z, for any n. If we apply the extended Euclidean algo-
rithm to the equation nx + by = d, and the algorithm yields d = 1,theny = b~
inZ,.

In this section, we have shown how to construct a finite field of order p, where p is
prime. Specifically, we defined GF(p) with the following properties.

GF(p) consists of p elements.

The binary operations + and X are defined over the set. The operations of
addition, subtraction, multiplication, and division can be performed without
leaving the set. Each element of the set other than 0 has a multiplicative
inverse.

We have shown that the elements of GF(p) are the integers {0,1,...,p — 1}
and that the arithmetic operations are addition and multiplication mod p.

106 CHAPTER 4 / BASIC CONCEPTS IN NUMBER THEORY AND FINITE FIELDS

4.6 POLYNOMIAL ARITHMETIC

Before continuing our discussion of finite fields, we need to introduce the interest-
ing subject of polynomial arithmetic. We are concerned with polynomials in a single
variable x, and we can distinguish three classes of polynomial arithmetic.

¢ Ordinary polynomial arithmetic, using the basic rules of algebra.

* Polynomial arithmetic in which the arithmetic on the coefficients is performed
modulo p; that is, the coefficients are in GF(p).

* Polynomial arithmetic in which the coefficients are in GF(p), and the polynomials
are defined modulo a polynomial 772(x) whose highest power is some integer n.

This section examines the first two classes, and the next section covers the
last class.

Ordinary Polynomial Arithmetic

A polynomial of degree n (integer n = 0) is an expression of the form

n
f(x) = ax" + ap_ X"+ o+ ax +oay = > ax!
i=0
where the a; are elements of some designated set of numbers S, called the coefficient
set,and a,, # 0. We say that such polynomials are defined over the coefficient set S.

A zero-degree polynomial is called a constant polynomial and is simply an
element of the set of coefficients. An nth-degree polynomial is said to be a monic
polynomial if a, = 1.

In the context of abstract algebra, we are usually not interested in evaluating a
polynomial for a particular value of x [e.g., f(7)]. To emphasize this point, the vari-
able x is sometimes referred to as the indeterminate.

Polynomial arithmetic includes the operations of addition, subtraction, and
multiplication. These operations are defined in a natural way as though the variable x
was an element of S. Division is similarly defined, but requires that S be a field.
Examples of fields include the real numbers, rational numbers, and Z,, for p prime.
Note that the set of all integers is not a field and does not support polynomial division.

Addition and subtraction are performed by adding or subtracting correspond-
ing coefficients. Thus, if

fix) = Eaixi; glx) = E bx'y, n=m
=0 i=0
then addition is defined as

flx) + gx) = 2(@ +byx' + i ax’

i=m+1

and multiplication is defined as

n+m

flx) X g(x) = ;}cixi

107

where
Cy — aobk + albk—l + ...+ ak—lbl + akbo

In the last formula, we treat g; as zero for i > n and b; as zero for i > m. Note that
the degree of the product is equal to the sum of the degrees of the two polynomials.

As an example, let f(x) = x*> + x*> + 2and g(x) = x> — x + 1, where S is the set
of integers. Then

flx) +gx)=x*+2x>—x+3
flx) —gx) =x*+x+1
flx) X g(x) = x>+ 3x* —2x + 2

Figures 4.3a through 4.3c show the manual calculations. We comment on division
subsequently.

Let us now consider polynomials in which the coefficients are elements of some
field F; we refer to this as a polynomial over the field F. In that case, it is easy to
show that the set of such polynomials is a ring, referred to as a polynomial ring.
That is, if we consider each distinct polynomial to be an element of the set, then
that set is a ring.®

x3 +x? +2 x3 +x2 + 2
+ (2-x+1) - (F*-x+1)
X3 +22- x + 3 x3 +x +1
(a) Addition (b) Subtraction
x5+ x2 +2 x + 2
x (X2-x+1) ?—x+1/3+x2 + 2
x3 +x2 + 2 ¥-x2+x
—xt -3 - 2x 22— x + 2
Bext a? 22-2x+ 2
x5 +3x2-2x + 2 x
(¢) Multiplication (d) Division

Examples of Polynomial Arithmetic

81n fact, the set of polynomials whose coefficients are elements of a commutative ring forms a polynomial
ring, but that is of no interest in the present context.

108

When polynomial arithmetic is performed on polynomials over a field, then
division is possible. Note that this does not mean that exact division is possible.
Let us clarify this distinction. Within a field, given two elements a and b, the
quotient a/b is also an element of the field. However, given a ring R that is not a
field, in general, division will result in both a quotient and a remainder; this is not
exact division.

Consider the division 5/3 within a set S. If S is the set of rational numbers, which
is a field, then the result is simply expressed as 5/3 and is an element of S. Now
suppose that S is the field Z. In this case, we calculate (using Table 4.5¢)

53=(5%X31Ymod7 = (5X5)mod7 =4

which is an exact solution. Finally, suppose that S is the set of integers, which is a
ring but not a field. Then 5/3 produces a quotient of 1 and a remainder of 2:

5S3=1+2/3
S=1X3+2

Thus, division is not exact over the set of integers.

Now, if we attempt to perform polynomial division over a coefficient set that
is not a field, we find that division is not always defined.

If the coefficient set is the integers, then (5x%)/(3x) does not have a solution,
because it would require a coefficient with a value of 5/3, which is not in the
coefficient set. Suppose that we perform the same polynomial division over Z-.
Then we have (5x%)/(3x) = 4x, which is a valid polynomial over Z.

However, as we demonstrate presently, even if the coefficient set is a field,
polynomial division is not necessarily exact. In general, division will produce a quo-
tient and a remainder. We can restate the division algorithm of Equation (4.1) for
polynomials over a field as follows. Given polynomials f(x) of degree n and g(x) of
degree (m), (n = m), if we divide f(x) by g(x), we get a quotient g(x) and a remain-
der r(x) that obey the relationship

fx) = q(x)g(x) + r(x) 4.10)
with polynomial degrees:

Degree f(x) = n
Degree g(x) = m
Degree g(x) = n —m
Degree r(x) = m — 1

With the understanding that remainders are allowed, we can say that polyno-
mial division is possible if the coefficient set is a field.

109

In an analogy to integer arithmetic, we can write f(x) mod g(x) for the remain-
der r(x) in Equation (4.10). That is, r(x) = f(x) mod g(x). If there is no remainder
[i.e., 7(x) = 0], then we can say g(x) divides f(x), written as g(x) | f(x). Equivalently,
we can say that g(x) is a factor of f(x) or g(x) is a divisor of f(x).

Forthe precedingexample [f(x) = x> + x* + 2andg(x) = x*> — x + 1], fix)/g(x)
produces a quotient of g(x) = x + 2 and a remainder r(x) = x, as shown in
Figure 4.3d. This is easily verified by noting that
g)gx) +rx) = x +2)P —x+ D +x=F+x* —x+2)+x
=x+x*+2=flx)

For our purposes, polynomials over GF(2) are of most interest. Recall from
Section 4.5 that in GF(2),addition is equivalent to the XOR operation,and multiplica-
tion is equivalent to the logical AND operation. Further, addition and subtraction are
equivalentmod2:1 +1=1-1=01+0=1-0=10+1=0-1= 1.

Figure 4.4 shows an example of polynomial arithmetic over GF(2). For
fx)y ="+ +x*+ x>+ x + 1) and g(x) = (x* + x + 1), the figure shows
f(x) + g(x); flx) — g(x); fx) X g(x); and f(x)/g(x). Note that g(x) | f(x).

A polynomial f(x) over a field F is called irreducible if and only if f(x) can-
not be expressed as a product of two polynomials, both over F, and both of degree
lower than that of f(x). By analogy to integers, an irreducible polynomial is also
called a prime polynomial.

The polynomial® f(x) = x* + 1 over GF(2) is reducible, because
+1=0x+DE+x+x+1).

Consider the polynomial f(x) = x> + x + 1.Itis clear by inspection that x is not
a factor of f(x). We easily show that x + 1 is not a factor of f(x):
P+ x
Y 4+ x+1
x>+ x?
X+ x
X2+ x

1

Thus, f(x) has no factors of degree 1. But it is clear by inspection that if f(x) is re-
ducible, it must have one factor of degree 2 and one factor of degree 1. Therefore,
f(x) is irreducible.

%In the remainder of this chapter, unless otherwise noted, all examples are of polynomials over GF(2).

110

x’ +x°+ x4+ 53 +x + 1
+(x3 +x+1)
x7 + x5+ x4
(a) Addition
x7 +x3 4 x4 53 +x +1
—(x3 +x+1)
x’ + x5 + x4

(b) Subtraction

b +x5+ x4+ 23 +x +1
x (x3 +x+1)
5 +x0+x4 423 +x +1
x3 +x0 + x5 4+ x4 +x2+ x
210 x84 x7 6 +xt+ 23
el +x4 +x2 +1
(c) Multiplication
x*+1
x3+x+1/x7 +x0+ x4+ 23 +x +1
x7 +x0 + x4
e +x + 1
s +x + 1

(d) Division

Examples of Polynomial Arithmetic over GF(2)

We can extend the analogy between polynomial arithmetic over a field and integer
arithmetic by defining the greatest common divisor as follows. The polynomial c(x)
is said to be the greatest common divisor of a(x) and b(x) if the following are true.

¢(x) divides both a(x) and b(x).

Any divisor of a(x) and b(x) is a divisor of c(x).

An equivalent definition is the following: gcd[a(x), b(x)] is the polynomial of
maximum degree that divides both a(x) and b(x).

We can adapt the Euclidean algorithm to compute the greatest common

divisor of two polynomials. The equality in Equation (4.6) can be rewritten as the
following theorem.

111

gcd[a(x), b(x)] = ged[b(x), a(x) mod b(x)] 4.11)

Equation (4.11) can be used repetitively to determine the greatest common
divisor. Compare the following scheme to the definition of the Euclidean algorithm
for integers.

Euclidean Algorithm for Polynomials
Calculate Which satisfies
ri(x) = a(x)mod b(x) a(x) = qi(x)b(x) + ri(x)
rp(x) = b(x)mod ry(x) b(x) = qa(x)ri(x) + ry(x)
r3(x) = ri(x)mod ry(x) ri(x) = q3(x)ry(x) + r3(x)
rn(x) = rn—Z(X)mOd rn—l(x) rn—Z(x) = Qn(x)rn—l(x) + rn(x)
Fae1(X) = 1 (0)r,(x) + 0
Fpr1(x) = rp—q(x)mod r,(x) = 0 d(x) = ged(a(x),b(x)) = ry(x)

At each iteration, we have d(x) = gcd(r;+1(x), r(x)) until finally
d(x) = ged(r,(x),0) = r,(x). Thus, we can find the greatest common divisor of two
integers by repetitive application of the division algorithm. This is the Euclidean
algorithm for polynomials. The algorithm assumes that the degree of a(x) is greater
than the degree of b(x).

Find ged[a(x),b(x)] for a(x) =x*+ X +x* + X¥* + x> + x + 1 and b(x) =
x* + x* + x + 1.First, we divide a(x) by b(x):

X2+ x
P+ 1+ A+ A+
x° +xt+ 3+ 42
x° +x+1
b X+t +x
X+ X +1
This yields 7,(x) = x> + x> + 1and q (x) = x*> + x.
Then, we divide b(x) by r(x).

x +1
2+ +1/x* +x2+x+1
>+ X + x
X3+ x? +1
X+ x2 +1

This yields r,(x) = 0 and g,(x) = x + 1.
Therefore, ged[a(x),b(x)] = ri(x) = x> + x* + 1.

112

We began this section with a discussion of arithmetic with ordinary polynomials.
In ordinary polynomial arithmetic, the variable is not evaluated; that is, we do not
plug a value in for the variable of the polynomials. Instead, arithmetic operations
are performed on polynomials (addition, subtraction, multiplication, division) using
the ordinary rules of algebra. Polynomial division is not allowed unless the coeffi-
cients are elements of a field.

Next, we discussed polynomial arithmetic in which the coefficients are ele-
ments of GF(p). In this case, polynomial addition, subtraction, multiplication, and
division are allowed. However, division is not exact; that is, in general division re-
sults in a quotient and a remainder.

Finally, we showed that the Euclidean algorithm can be extended to find the
greatest common divisor of two polynomials whose coefficients are elements of a field.

All of the material in this section provides a foundation for the following sec-
tion, in which polynomials are used to define finite fields of order p".

Earlier in this chapter, we mentioned that the order of a finite field must be of the form
pP", where p is a prime and # is a positive integer. In Section 4.5, we looked at the spe-
cial case of finite fields with order p. We found that, using modular arithmeticin Z,,, all
of the axioms for a field (Figure 4.2) are satisfied. For polynomials over p”, withn > 1,
operations modulo p" do not produce a field. In this section, we show what structure
satisfies the axioms for a field in a set with p” elements and concentrate on GF(2").

Virtually all encryption algorithms, both symmetric and public key, involve arithme-
tic operations on integers. If one of the operations that is used in the algorithm is
division, then we need to work in arithmetic defined over a field. For convenience
and for implementation efficiency, we would also like to work with integers that fit
exactly into a given number of bits with no wasted bit patterns. That is, we wish to
work with integers in the range 0 through 2" — 1, which fit into an n-bit word.

Suppose we wish to define a conventional encryption algorithm that operates on
data 8 bits at a time, and we wish to perform division. With 8 bits, we can repre-
sent integers in the range 0 through 255. However, 256 is not a prime number, so
that if arithmetic is performed in Z,s¢ (arithmetic modulo 256), this set of inte-
gers will not be a field. The closest prime number less than 256 is 251. Thus, the
set Z,s1, using arithmetic modulo 251, is a field. However, in this case the 8-bit
patterns representing the integers 251 through 255 would not be used, resulting
in inefficient use of storage.

113

As the preceding example points out, if all arithmetic operations are to be
used and we wish to represent a full range of integers in n bits, then arithmetic
modulo 2" will not work. Equivalently, the set of integers modulo 2" for n > 1, is
not a field. Furthermore, even if the encryption algorithm uses only addition and
multiplication, but not division, the use of the set Z, is questionable, as the follow-
ing example illustrates.

Suppose we wish to use 3-bit blocks in our encryption algorithm and use only
the operations of addition and multiplication. Then arithmetic modulo 8 is well
defined, as shown in Table 4.2. However, note that in the multiplication table, the
nonzero integers do not appear an equal number of times. For example, there are
only four occurrences of 3, but twelve occurrences of 4. On the other hand, as was
mentioned, there are finite fields of the form GF(2"),so there is in particular a finite
field of order 2° = 8. Arithmetic for this field is shown in Table 4.6. In this case,
the number of occurrences of the nonzero integers is uniform for multiplication.
To summarize,

Integer 1 2 3 4 5 6 7
Occurrences in Zg 4 8 4 12 4 8 4
Occurrencesin GF(2*) 7 7 7 7 7 7 7

For the moment, let us set aside the question of how the matrices of
Table 4.6 were constructed and instead make some observations.

The addition and multiplication tables are symmetric about the main
diagonal, in conformance to the commutative property of addition and
multiplication. This property is also exhibited in Table 4.2, which uses
mod 8 arithmetic.

All the nonzero elements defined by Table 4.6 have a multiplicative inverse,
unlike the case with Table 4.2.

The scheme defined by Table 4.6 satisfies all the requirements for a finite
field. Thus, we can refer to this scheme as GF(2%).

For convenience, we show the 3-bit assignment used for each of the
elements of GF(2%).

Intuitively, it would seem that an algorithm that maps the integers unevenly
onto themselves might be cryptographically weaker than one that provides a uni-
form mapping. Thus, the finite fields of the form GF(2") are attractive for crypto-
graphic algorithms.

To summarize, we are looking for a set consisting of 2" elements, together
with a definition of addition and multiplication over the set that define a field. We
can assign a unique integer in the range 0 through 2" — 1 to each element of the set.

114 CHAPTER 4 / BASIC CONCEPTS IN NUMBER THEORY AND FINITE FIELDS

Table 4.6 Arithmetic in GF(2°)
000 001 010 O11 100 101 110 111

+ 0 1 2 3 4 5 6 7
000 0 0 1 2 3 4 5 6 7
001 1 1 0 3 2 5 4 7 6
010 2 2 3 0 1 6 7 4 5
011 3 3 2 1 0 7 6 5 4
100 4 4 5 6 7 0 1 2 3
101 5 5 4 7 6 1 0 3 2
110 6 6 7 4 5 2 3 0 1
111 7 7 6 5 4 3 2 1 0

(a) Addition
000 001 010 011 100 101 110 111

x 0 1 2 3 4 5 6 7 woo—w ow!
000 0 0 0 0 0 0 0 0 0 0 0 —
001 1 0 1 2 3 4 5 6 7 1 1 1
010 2 0 2 4 6 3 1 7 5 2 2 5
011 3 0 3 6 5 7 4 1 2 3 3 6
100 4 0 4 3 7 6 2 5 1 4 4 7
101 5 0 5 1 4 2 7 3 6 5 5 2
110 6 0 6 7 1 5 3 2 4 6 6 3
111 7 0 7 5 2 1 6 4 3 7 7 4

(b) Multiplication (c) Additive and multiplicative

inverses

Keep in mind that we will not use modular arithmetic, as we have seen that this does
not result in a field. Instead, we will show how polynomial arithmetic provides a
means for constructing the desired field.

Modular Polynomial Arithmetic

Consider the set S of all polynomials of degree n — 1 or less over the field Z,,. Thus,
each polynomial has the form

n—1
flx) = X"Vt a, X4t ax gy = Eaix‘
=0
where each g; takes on a value in the set {0,1,...,p — 1}. There are a total of p"

different polynomials in S.

115

For p = 3 and n = 2,the 3> = 9 polynomials in the set are
0 X 2x

1 x+1 2x+1
2 x+2 2x+2

For p = 2and n = 3,the 2° = 8 polynomials in the set are

0 x+1 X2 +x
1 x? 2+ x+1
x x2+1

With the appropriate definition of arithmetic operations, each such set S is a
finite field. The definition consists of the following elements.

Arithmetic follows the ordinary rules of polynomial arithmetic using the basic
rules of algebra, with the following two refinements.

Arithmetic on the coefficients is performed modulo p.That is, we use the rules
of arithmetic for the finite field Z,.

If multiplication results in a polynomial of degree greater than n — 1, then the
polynomial is reduced modulo some irreducible polynomial m(x) of degree n.
That is, we divide by m(x) and keep the remainder. For a polynomial f(x), the
remainder is expressed as r(x) = f(x) mod m(x).

The Advanced Encryption Standard (AES) uses arithmetic in the finite field GF(2%), with
the irreducible polynomial m(x) = x® + x* + x> + x + 1. Consider the two polynomials
fix) =x5+x*+ x>+ x + land g(x) = x’ + x + 1. Then

fx) +gx) =x®+x*+ 2 +x+1+x +x+1
=x + x5+ x* + x?

flx) X gx) = 2B + x + x7 + x% + &7
+x+ 0+ + 4 x
+x0+xt+ x4+ 1

=xB 4+l + X+ B+ 0+ +xr+ P+ 1

x + x3
B+t + P+ x+ B+ x4+ 0+ 48 + 0+ X+t + 3+
x13 + x2 + x8 + x5+ X
xll +x4+x3
xt + x7 + x° + x* + X3

x| + x0 + 1

Therefore, f(x) X g(x) mod m(x) = x” + x® + 1.

116

As with ordinary modular arithmetic, we have the notion of a set of residues
in modular polynomial arithmetic. The set of residues modulo m(x), an nth-degree
polynomial, consists of p”* elements. Each of these elements is represented by one of
the p" polynomials of degree m < n.

The residue class [x + 1], (modm(x)), consists of all polynomials a(x) such that
a(x) = (x + 1) (modm(x)). Equivalently, the residue class [x + 1] consists of all
polynomials a(x) that satisty the equality a(x) modm(x) = x + 1.

It can be shown that the set of all polynomials modulo an irreducible
nth-degree polynomial m(x) satisfies the axioms in Figure 4.2, and thus forms a
finite field. Furthermore, all finite fields of a given order are isomorphic; that is,
any two finite-field structures of a given order have the same structure, but the
representation or labels of the elements may be different.

To construct the finite field GF(2°), we need to choose an irreducible poly-
nomial of degree 3. There are only two such polynomials: (x*> + x> + 1) and
(x> + x + 1). Using the latter, Table 4.7 shows the addition and multiplication
tables for GF(2?). Note that this set of tables has the identical structure to those
of Table 4.6. Thus, we have succeeded in finding a way to define a field of order 2°.

We can now read additions and multiplications from the table easily. For
example, consider binary 100 + 010 = 110. This is equivalent to x* + x. Also
consider 100 X 010 = 011, which is equivalent to x> X x = x* and reduces to
x + 1.That is, x> mod (x* + x + 1) =x + 1, which is equivalent to 011.

Just as the Euclidean algorithm can be adapted to find the greatest common divi-
sor of two polynomials, the extended Euclidean algorithm can be adapted to find
the multiplicative inverse of a polynomial. Specifically, the algorithm will find the
multiplicative inverse of b(x) modulo a(x) if the degree of b(x) is less than the de-
gree of a(x) and ged[a(x), b(x)] = 1. If a(x) is an irreducible polynomial, then it has
no factor other than itself or 1, so that gcd[a(x), b(x)] = 1. The algorithm can be
characterized in the same way as we did for the extended Euclidean algorithm for
integers. Given polynomials a(x) and b(x) with the degree of a(x) greater than the
degree of b(x), we wish to solve the following equation for the values v(x), w(x),
and d(x), where d(x) = ged[a(x), b(x)]:

a(x)v(x) + b(x)w(x) = d(x)

If d(x) = 1, then w(x) is the multiplicative inverse of b(x) modulo a(x). The calcula-
tions are as follows.

L11

Table 4.7

000
001
010
011
100
101
110
111

000
001
010
011
100
101
110
111

Polynomial Arithmetic Modulo (x*> + x + 1)

x+1

2 +1
2 +x

X2 +x+1

x +1

2 +1
P2+ x

X+x+1

000 001 010 011 100 101 110 111
1 X x +1 x? X +1 X+ x X +x+1
1 X x+1 x? 2 +1 X +1 X+x +1

1 0 x+1 x 2+ 1 x2 2 +x+1 X2+ x

x x+1 0 1 X2+ x PHx+1 x? 41
x+1 x 1 0 P +x+1 X2+ x 2+ 1 x?

x? xr +1 ¥+ x ¥ +x+1 0 1 x x +1
2 +1 x? X +x+1 X+ x 1 0 x +1 X
X+ x X +x+1 x2 2 +1 x x +1 0

¥ +x+1 X+ x ¥+ 1 x? x +1 x 1 0
(a) Addition

000 001 010 011 100 101 110 111

0 1 x x +1 X2 ¥+ 1 X2+ x 2 +x+1

0 0 0 0 0 0 0

0 1 x x +1 x2 X2 +1 x4+ x 2 +x+1

0 x x? ¥+ x x +1 1 X +x+1 X +1

0 x +1 X +x X +1 2 +x+1 x? 1 X

0 x? x +1 2 +x+1] x*+x X ¥+ 1 1

0 ¥+ 1 1 x? x ¥ +x+1 x +1 x? +x

0 ¥ +x ¥ +x+1 1 2 +1 x +1 x x?

0 ?Ax+1| K2 +1 x 1 ¥+ 1 x? x+1

(b) Multiplication

118

CHAPTER 4 / BASIC CONCEPTS IN NUMBER THEORY AND FINITE FIELDS

Extended Euclidean Algorithm for Polynomials

Calculate Which satisfies Calculate Which satisfies
ro(x) = a(x) V(0 = Lwoy(x) = 0| a(x) = a(@)v_y(x) +
bw_;(x)
ro(x) = b(x) w(x) = 0;wo(x) =1 | b(x) = alx)w(x) +

b(x)wo(x)

ri(x) = a(x) mod b(x)
q,(x) = quotient of
a(x)/b(x)

a(x) = qi(x)b(x) +
ri(x)

vi(x) = voy(x) —
G()v(x) =1

wi(x) = w_q(x) =
q1()wo(x) = —q1(x)

n(x) = at)v(x) +
b(x)wi(x)

r(x) = b(x) mod ry(x)

b(x) = gx(x)ri(x) +

n(x) = (x) —

r(x) = a(x)vx) +

¢,(x) = quotient of r(x) G2 (x) b(x)wy(x)
b(x)/ri(x) wa(x) = wo(x) —

G (x)wi(x)
r3(x) = ri(x) mod ry(x) | ri(x) = g3(x)ra(x) + vi(x) = m(x) — r3(x) = a(x)vs(x) +
g5(x) = quotient of r3(x) q3(x)va(x) b(x)ws(x)
ri(x)/ra(x) wi(x) = wy(x) —

g3(x)wa(x)

ro(x) = r,_»(x) mod
rn—l(x)
g,(x) = quotient of

Tp—2(X)/1—3(x)

rn72(-x) = Qn(x)rnfl(x)
+ ry(x)

Va(X) = vya(x) —
Gn(x)V,-1(x)

Wp(x) = wy_o(x) —
gn(X)Wp—1(x)

ra(x) = a(x)vu(x) +
b(x)wu(x)

rn+1(x) = n*l(x) mod
ru(x) =0
qn+1(x) = quotient of

Tp—1(X)/1—5(x)

rn*l(x) = qn+1(x)rn(x)
+0

d(x) = ged(a(x),
b(x)) = ru(x)
v(x) = v(x); wlx) =

W(x)

Table 4.8 shows the calculation of the multiplicative inverse of (x” + x + 1)
mod (x® + x* + x* + x + 1). The result is that (x” + x + 1)"! = (x7). That is,
&+ x+ D) =1(mod (x® + x* + x* +x +1)).

Computational Considerations

A polynomial f(x) in GF(2")

n—1

fx) =a, X" P4 a, x4 ax + oy = Eaixi

i=0

can be uniquely represented by the sequence of its n binary coefficients (a,_1, a,,—5,
..., ag). Thus, every polynomial in GF(2") can be represented by an n-bit number.

119

Extended Euclid [(x® + x* + x> + x + 1), (x” + x + 1)]

Initialization | g(x) = 2%+ x* + ¥+ x + ;v (x) = LLw_i(x) = 0
b(x) = x" + x + 1;y(x) = 0 wy(x) = 1

Iteration 1 Gx) =) =x*+ 3+ +1

nx) = Lwi(x) = x
Iteration 2 Gx) =32 + X%+ Linkx) =x

BE) =+ + L) =x* + 3 +x + 1
Iteration 3 ga(x) = X + X% + xr3(x) = 1

(x) = 2% + X2 + x + 1Ly ws(x) = &7
Iteration 4 qa(x) = x;14(x) = 0

ux) =x" +x+ Lwyx) =2 +xt + 0 x4+ 1
Result d(x) = r3(x) = ged(a(x), b(x)) =1

wx) =wix) =@ +x+ 1) 'mod ¥+ x* + x>+ x+1) =47

Tables 4.6 and 4.7 show the addition and multiplication tables for GF(2*) modulo
m(x) = (x> + x + 1). Table 4.6 uses the binary representation, and Table 4.7
uses the polynomial representation.

We have seen that addition of polynomials is performed by adding cor-
responding coefficients, and, in the case of polynomials over Z,, addition is just the
XOR operation. So, addition of two polynomials in GF(2") corresponds to a bitwise
XOR operation.

Consider the two polynomials in GF(2%) from our earlier example:
fx) =x0+x*+ x> +x+landg(x) = x" + x + 1.
B+t +x2+x+1)+ @ +x+1)=x" +x°+ x* + x? (polynomial notation)
(01010111) @ (10000011) = (11010100) (binary notation)
(57} ® {83} = (D4} (hexadecimal notation)!°

There is no simple XOR operation that will accomplish multi-
plication in GF(2"). However, a reasonably straightforward, easily implemented
technique is available. We will discuss the technique with reference to GF(2%) using
m(x) = x® + x* + ¥* + x + 1, which is the finite field used in AES. The technique
readily generalizes to GF(2").

The technique is based on the observation that

¥modmx) = [mkx) — ¥ =*+ ¥ +x+1) 4.12)

10A basic refresher on number systems (decimal, binary, hexadecimal) can be found at the Computer
Science Student Resource Site at WilliamStallings.com/StudentSupport.html. Here each of two groups
of 4 bits in a byte is denoted by a single hexadecimal character, and the two characters are enclosed in
brackets.

120

A moment’s thought should convince you that Equation (4.12) is true; if you
are not sure, divide it out. In general, in GF(2") with an nth-degree polynomial p(x),
we have x"mod p(x) = [p(x) — x"].

Now, consider a polynomial in GF(2%), which has the form f(x) = bx’ +
bex® + bsx® + byt + bsx® + byx? + byx + by. If we multiply by x, we have

x X f(x) = (bx® + bex” + bsx® + byx® + byx*
+ bx® + bix? + bgx) mod m(x) 4.13)

If b; = 0, then the result is a polynomial of degree less than 8§, which is already
in reduced form, and no further computation is necessary. If b; = 1, then reduction
modulo m(x) is achieved using Equation (4.12):

x X fx) = (bgx” + bsx® + byx® + bsx* + box® + bix* + byx)
+*+ P +x+1)

It follows that multiplication by x (i.e., 00000010) can be implemented as a 1-bit
left shift followed by a conditional bitwise XOR with (00011011), which represents
(x* + x* + x + 1). To summarize,

(b6b5b4b3b2blb00) if b7 =0

4.14
(bgbsbabsbabibo0) @ (00011011) if by = 1 @14

xxf(x)Z{

Multiplication by a higher power of x can be achieved by repeated application
of Equation (4.14). By adding intermediate results, multiplication by any constant
in GF(2%) can be achieved.

So,

In an earlier example, we showed that for f(x) = x® + x* + x> + x + 1, g(x) = x" + x + 1,
and m(x) =x%+x* + x>+ x + 1, we have f(x) X g(x) modm(x) = x” + x® + 1.
Redoing this in binary arithmetic, we need to compute (01010111) X (10000011). First,
we determine the results of multiplication by powers of x:

(01010111) X (10000011) = (01010111) X [(00000001) @ (00000010) @ (10000000)]

which is equivalent to x” + x® + 1.

(01010111) X (00000010) = (10101110)
(01010111) X (00000100) = (01011100) @ (00011011) = (01000111)
(01010111) X (00001000) = (10001110)

(01010111) X (00010000) = (00011100) @ (00011011) = (00000111)
(01010111) X (00100000) = (00001110)

(01010111) X (01000000) = (00011100)

(01010111) X (10000000) = (00111000)

= (01010111) @ (10101110) @ (00111000) = (11000001)

121

An equivalent technique for defining a finite field of the form GF(2"), using the
same irreducible polynomial, is sometimes more convenient. To begin, we need two
definitions: A generator g of a finite field F of order ¢ (contains ¢ elements) is an
element whose first ¢ — 1 powers generate all the nonzero elements of F. That is, the
elements of F consist of 0, go, gl, R ~2. Consider a field F defined by a polyno-
mial f(x). An element b contained in F is called a root of the polynomial if f(b) = 0.
Finally, it can be shown that a root g of an irreducible polynomial is a generator of the
finite field defined on that polynomial.

Let us consider the finite field GF(2), defined over the irreducible poly-
nomial x* + x + 1, discussed previously. Thus, the generator g must satisfy
flg) = g + g+ 1=0. Keep in mind, as discussed previously, that we need
not find a numerical solution to this equality. Rather, we deal with polyno-
mial arithmetic in which arithmetic on the coefficients is performed modulo 2.
Therefore, the solution to the preceding equality is g = —g — 1 =g + 1.
We now show that g in fact generates all of the polynomials of degree less than 3.
We have the following.

We see that the powers of g generate all the nonzero polynomials in
GF(2%). Also, it should be clear that g& = gf™°97 for any integer k. Table 4.9
shows the power representation, as well as the polynomial and binary
representations.

(Continued)
Generator for GF(2®) using x> + x + 1
Power Polynomial Binary Decimal (Hex)
Representation | Representation Representation Representation
0 0 000 0
2(=¢g) 1 001 1
g! g 010 2
g & 100 4
& g+1 011 3
g &+g 110 6
g5 gz +g+1 111 7
g° g +1 101 5

122

(Continued)

This power representation makes multiplication easy. To multiply in the
power notation, add exponents modulo 7 For example, g* + g® = g(0mod) =
g> = g + 1. The same result is achieved using polynomial arithmetic: We have
gt=g"+gandg®=¢g>+ 1. Then, (& +g) X (g + 1) =g* + g + g + 1.
Next, we need to determine (g* + g°> + g> + 1) mod (g* + g + 1) by division:

g +1
g+l +gd+g2+g
g+ g +g

g3+ gt1
g+1

We get a result of g + 1, which agrees with the result obtained using the power
representation.

Table 4.10 shows the addition and multiplication tables for GF(2°) using
the power representation. Note that this yields the identical results to the
polynomial representation (Table 4.7) with some of the rows and columns
interchanged.

In general, for GF(2") with irreducible polynomial f(x), determine
g" = f(g) — g". Then calculate all of the powers of g from g"*! through g> 2.
The elements of the field correspond to the powers of g from g° through g
plus the value 0. For multiplication of two elements in the field, use the equality
gk = gkmed@™=D for any integer k.

In this section, we have shown how to construct a finite field of order 2. Specifically,
we defined GF(2") with the following properties.

GF(2") consists of 2" elements.

The binary operations + and X are defined over the set. The operations
of addition, subtraction, multiplication, and division can be performed
without leaving the set. Each element of the set other than 0 has a multi-
plicative inverse.

We have shown that the elements of GF(2") can be defined as the set of all
polynomials of degree n — 1 or less with binary coefficients. Each such polynomial
can be represented by a unique n-bit value. Arithmetic is defined as polynomial
arithmetic modulo some irreducible polynomial of degree n. We have also seen that
an equivalent definition of a finite field GF(2") makes use of a generator and that
arithmetic is defined using powers of the generator.

2"-2

(X4}

Table 4.10 GF(2%) Arithmetic Using Generator for the Polynomial (x> + x + 1)

000
001
010
100
011
110
111
101

000
001

010
100
011
110
111
101

—_

o

W

W

0Q Oy Oy Oy Oy
(=2}

000 001 010 100 011 110 111 101
+ 0 1 G g g g* g g
0 1 G I's gt+1 g +g g+g+1 g +1
1 0 g+ 1 &+ 1 g ft+g+l g +g g
g g g+1 0 g +g 1 I'e g +1 gZ+g+1
& & 2+ 1 S+g 0 Frg+i1 g g+1 1
g g+ 1 8 1 g +g+1 0 g +1 g g +g
g4 g2+g g2+g+1 gZ g g2+1 0 1 g+1
g g+g+1 g£+g g +1 g+1 & 1 0 8
g° g +1 I'e g+g+1 1 g&+g g+1 8 0
(a) Addition
000 001 010 100 011 110 111 101
0 1 G g g g g g°
0 0 0 0 0 0 0
0 1 G g g+1 £+g g+g+l g +1
0 8 g g+1 g2+g g+g+1 g +1 1
0 g g+1 g2+g g+g+1 g +1 1 g
0 g+1 g+g g+g+1 g +1 1 g &
0 g2+g g+g+1 g +1 1 8 g g+1
0 gZ+g+1 g +1 8 g g+1 gZ+g
0 e 1 & g+1 g2+g g+g+1

(b) Multiplication

124 CHAPTER 4 / BASIC CONCEPTS IN NUMBER THEORY AND FINITE FIELDS

4.8 RECOMMENDED READING

[HERS75], still in print, is the classic treatment of abstract algebra; it is readable and
rigorous. [DESK92] is another good resource. [KNUT98] provides good coverage of
polynomial arithmetic.

One of the best treatments of the topics of this chapter is [BERLS84], still in print.
[GARRO1] also has extensive coverage. A thorough and rigorous treatment of finite fields
is [LIDL94]. Another solid treatment is [MURP00]. [HORO71] is a good overview of the
topics of this chapter.

BERL84 Berlekamp, E. Algebraic Coding Theory. Laguna Hills, CA: Aegean Park
Press, 1984.

DESK92 Deskins, W. Abstract Algebra. New York: Dover, 1992.

GARRO1 Garrett, P. Making, Breaking Codes: An Introduction to Cryptology. Upper
Saddle River, NJ: Prentice Hall, 2001.

HERS75 Herstein, 1. Topics in Algebra. New York: Wiley, 1975.

HORO71 Horowitz, E. “Modular Arithmetic and Finite Field Theory: A Tutorial.”
Proceedings of the Second ACM Symposium and Symbolic and Algebraic
Manipulation, March 1971.

KNUT98 Knuth, D. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms. Reading, MA: Addison-Wesley, 1998.

LIDL94 Lidl, R. and Niederreiter, H. Introduction to Finite Fields and Their
Applications. Cambridge: Cambridge University Press, 1994.

MURPO0 Murphy, T. Finite Fields. University of Dublin, Trinity College, School of
Mathematics. 2000. Document available at this book’s Premium Content Web site.

4.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
abelian group greatest common divisor modulus
associative group monic polynomial
coefficient set identity element order
commutative infinite field polynomial

commutative ring
cyclic group

divisor

Euclidean algorithm
field

finite field

finite group
generator

infinite group

infinite ring

integral domain

inverse element

irreducible polynomial

modular arithmetic

modular polynomial
arithmetic

polynomial arithmetic
polynomial ring
prime number

prime polynomial
relatively prime
residue

ring

125

Briefly define a group.

Briefly define a ring.

Briefly define a field.

What does it mean to say that b is a divisor of a?

What is the difference between modular arithmetic and ordinary arithmetic?
List three classes of polynomial arithmetic.

For the group S, of all permutations of » distinct symbols,
what is the number of elements in §,,?
show that S, is not abelian for n > 2.
Does the set of residue classes (mod3) form a group
with respect to modular addition?
with respect to modular multiplication?

Consider the set S = {a, b} with addition and multiplication defined by the following
tables.

+ a b X a b
a b a a
b b a b a

Is S a ring? Justify your answer.

Reformulate Equation (4.1), removing the restriction that a is a nonnegative integer.
That is, let a be any integer.

Draw a figure similar to Figure 4.1 for a < 0.
For each of the following equations, find an integer x that satisfies the equation.

S5x = 4 (mod 3)
7x = 6 (mod 5)
9x = 8 (mod 7)

In this text, we assume that the modulus is a positive integer. But the definition of the
expression a mod n also makes perfect sense if 7 is negative. Determine the following:

5Smod3

5mod -3

—5mod 3

—5mod —3
A modulus of 0 does not fit the definition but is defined by convention as follows:
amod 0 = a. With this definition in mind, what does the following expression mean:
a = b (mod 0)?
In Section 4.3, we define the congruence relationship as follows: Two integers a and b
are said to be congruent modulo # if (¢ mod n) = (b mod n). We then proved that
a=b(modn)if n| (a — b). Some texts on number theory use this latter relation-
ship as the definition of congruence: Two integers a and b are said to be congruent
modulo nifn | (a — b). Using this latter definition as the starting point, prove that, if
(amod n) = (b mod n), then n divides (a — b).
What is the smallest positive integer that has exactly k divisors, for 1 = k =< 6?

Prove the following:
a = b (mod n) implies b = a (mod n)
a = b (mod n) and b = ¢ (mod n) imply a = ¢ (mod n)

126

Prove the following:
[(a mod n) — (b mod n)] modn = (a — b) mod n
[(amod n) X (b modn)]modn = (a X b) mod n

Find the multiplicative inverse of each nonzero element in Zs.

Show that an integer N is congruent modulo 9 to the sum of its decimal digits. For
example, 475 =4 +7 +5=16=1+ 6 =7 (mod9). This is the basis for the
familiar procedure of “casting out 9’s” when checking computations in arithmetic.
Determine gcd(24140, 16762).
Determine gcd(4655, 12075).

The purpose of this problem is to set an upper bound on the number of iterations of
the Euclidean algorithm.

Suppose that m = gn + r withq > 0and 0 = r < n.Show that m/2 > r.

Let A; be the value of A in the Euclidean algorithm after the ith iteration. Show that

2
Show that if m, n, and N are integers with (1 < m, n, < 2V), then the Euclidean
algorithm takes at most 2N steps to find gcd(m, n).
The Euclidean algorithm has been known for over 2000 years and has always been
a favorite among number theorists. After these many years, there is now a potential
competitor, invented by J. Stein in 1961. Stein’s algorithms is as follows. Determine
gcd(A, B) with A, B = 1.
STEP 1 SetAl = A,Bl = B, Cl =1
STEP2 n (1) If A, = B, stop. ged(A, B) = A,C,
(2) If A, and B, are both even, set A, = A,/2, B,+1 = B,/2,C,1 = 2C,
(3)If A,iseven and B, is odd, set A1 = A,/2,B,+1 = B,, C,11 = C,
(4)If A, is odd and B, is even,set A, = A,, B,+1 = B,/2,C,+1 = C,
(3)If A, and B, are both odd, set A,,; = |A,—B, |, Byy1=
min (Bm An)’ Cn+l = Cn
Continue tostepn + 1.
To get a feel for the two algorithms, compute gcd(2152, 764) using both the Euclid-
ean and Stein’s algorithm.
What is the apparent advantage of Stein’s algorithm over the Euclidean algorithm?
Show that if Stein’s algorithm does not stop before the nth step, then

Cn+1 X ng(An+1, Bn+1) = Cn X ng(Am Bn)

Ay <

Show that if the algorithm does not stop before step (n — 1), then
A,B,

Ay i2Byio =)

Show thatif 1 = A, B =< 2V, then Stein’s algorithm takes at most 4N steps to find
gcd(m, n). Thus, Stein’s algorithm works in roughly the same number of steps as
the Euclidean algorithm.
Demonstrate that Stein’s algorithm does indeed return ged(A, B).
Using the extended Euclidean algorithm, find the multiplicative inverse of
1234 mod 4321
24140 mod 40902
550 mod 1769

Develop a set of tables similar to Table 4.5 for GF(5).
Demonstrate that the set of polynomials whose coefficients form a field is a ring.

Demonstrate whether each of these statements is true or false for polynomials over a field.
The product of monic polynomials is monic.

4.23

4.24

4.25

4.26
4.27
4.28

APPENDIX 4A / THE MEANING OF MOD 127

b. The product of polynomials of degrees m and » has degree m + n.

c. The sum of polynomials of degrees m and n has degree max [m, n].

For polynomial arithmetic with coefficients in Z;,, perform the following
calculations.

a (Tx +2) — (x*>+5)

b. (6x* + x + 3) X (5x% + 2)

Determine which of the following are reducible over GF(2).

a ¥ +1

b. ¥ +x*+1

c. x* + 1 (be careful)

Determine the gcd of the following pairs of polynomials.

a. x>+ x + land x> + x + 1 over GF(2)

b. x¥* —x + 1and x> + 1 over GF(3)

. X4+x*+x—x>—x+1landx®+ x>+ x + 1 over GF(3)

d. x> + 88x* + 73x3 + 83x% + 51x + 67 and x° + 97x% + 40x + 38 over GF(101)
Develop a set of tables similar to Table 4.7 for GF(4) with m(x) = x> + x + 1.
Determine the multiplicative inverse of x> + x + 1in GF(2*) with m(x) = x* + x + 1.

Develop a table similar to Table 4.9 for GF(2*) with m(x) = x* + x + 1.

Programming Problems

4.29

4.30

Write a simple four-function calculator in GF(2*). You may use table lookups for the
multiplicative inverses.

Write a simple four-function calculator in GF(2%). You should compute the multipli-
cative inverses on the fly.

APPENDIX 4A THE MEANING OF MOD

The operator mod is used in this book and in the literature in two different ways: as
a binary operator and as a congruence relation. This appendix explains the distinc-
tion and precisely defines the notation used in this book regarding parentheses. This
notation is common but, unfortunately, not universal.

The Binary Operator mod

If a is an integer and 7 is a positive integer, we define @ mod » to be the remainder
when a is divided by n. The integer #n is called the modulus, and the remainder is
called the residue. Thus, for any integer a, we can always write

a=lan] X n+ (amod n)
Formally, we define the operator mod as
amodn =a — |an] Xn forn # 0

As a binary operation, mod takes two integer arguments and returns the

remainder. For example, 7mod 3 = 1. The arguments may be integers, integer

128

variables, or integer variable expressions. For example, all of the following are valid,
with the obvious meanings:

7 mod 3
7 mod m
x mod 3
x mod m
(x> + y + 1) mod 2m + n)

where all of the variables are integers. In each case, the left-hand term is divided by
the right-hand term, and the resulting value is the remainder. Note that if either the
left- or right-hand argument is an expression, the expression is parenthesized. The
operator mod is not inside parentheses.

In fact, the mod operation also works if the two arguments are arbitrary real num-
bers, not just integers. In this book, we are concerned only with the integer operation.

As a congruence relation, mod expresses that two arguments have the same re-
mainder with respect to a given modulus. For example, 7 = 4 (mod 3) expresses the
fact that both 7 and 4 have a remainder of 1 when divided by 3. The following two
expressions are equivalent:

a = b (mod m) s amodm = bmodm

Another way of expressing it is to say that the expression a = b (mod m) is the
same as saying that @ — b is an integral multiple of m. Again, all the arguments may
be integers, integer variables, or integer variable expressions. For example, all of the
following are valid, with the obvious meanings:

7 = 4 (mod 3)
x =y (mod m)
x*+y+1)=(a+1)(mod[m + n])

where all of the variables are integers. Two conventions are used. The congruence
sign is =. The modulus for the relation is defined by placing the mod operator
followed by the modulus in parentheses.

The congruence relation is used to define residue classes. Those numbers that
have the same remainder r when divided by m form a residue class (mod m). There
are m residue classes (mod m). For a given remainder r, the residue class to which it
belongs consists of the numbers

r,r T mrx2m,...
According to our definition, the congruence
a = b (mod m)

signifies that the numbers a and b differ by a multiple of m. Consequently, the con-
gruence can also be expressed in the terms that a and b belong to the same residue
class (mod m).

ADVANCED ENCRYPTION STANDARD

5.1 Finite Field Arithmetic
5.2 AES Structure

General Structure
Detailed Structure

5.3 AES Transformation Functions

Substitute Bytes Transformation
ShiftRows Transformation
MixColumns Transformation
AddRoundKey Transformation

5.4 AES Key Expansion

Key Expansion Algorithm
Rationale

5.5 An AES Example

Results
Avalanche Effect

5.6 AES Implementation

Equivalent Inverse Cipher
Implementation Aspects

5.7 Recommended Reading

5.8 Key Terms, Review Questions, and Problems
Appendix 5A Polynomials with Coefficients in GF(2%)
Appendix 5B Simplified AES

129

130

“It seems very simple.”

“I have solved other ciphers of an abstruseness ten thousand times greater. Circum-
stances, and a certain bias of mind, have led me to take interest in such riddles, and it
may well be doubted whether human ingenuity can construct an enigma of the kind
which human ingenuity may not, by proper application, resolve.”

—The Gold Bug, Edgar Allen Poe

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Present an overview of the general structure of Advanced Encryption
Standard (AES).

Understand the four transformations used in AES.
Explain the AES key expansion algorithm.
Understand the use of polynomials with coefficients in GF(2%).

The Advanced Encryption Standard (AES) was published by the National Institute
of Standards and Technology (NIST) in 2001. AES is a symmetric block cipher that
is intended to replace DES as the approved standard for a wide range of applications.
Compared to public-key ciphers such as RSA, the structure of AES and most symmet-
ric ciphers is quite complex and cannot be explained as easily as many other crypto-
graphic algorithms. Accordingly, the reader may wish to begin with a simplified version
of AES, which is described in Appendix 5B. This version allows the reader to perform
encryption and decryption by hand and gain a good understanding of the working of
the algorithm details. Classroom experience indicates that a study of this simplified
version enhances understanding of AES.! One possible approach is to read the chapter
first, then carefully read Appendix 5B, and then re-read the main body of the chapter.

Appendix H looks at the evaluation criteria used by NIST to select from among
the candidates for AES, plus the rationale for picking Rijndael, which was the winning
candidate. This material is useful in understanding not just the AES design but also the
criteria by which to judge any symmetric encryption algorithm.

In AES, all operations are performed on 8-bit bytes. In particular, the arithmetic
operations of addition, multiplication, and division are performed over the finite
field GF(2%). Section 4.7 discusses such operations in some detail. For the reader
who has not studied Chapter 4, and as a quick review for those who have, this
section summarizes the important concepts.

In essence, a field is a set in which we can do addition, subtraction, multipli-
cation, and division without leaving the set. Division is defined with the following

'However, you may safely skip Appendix 5B, at least on a first reading. If you get lost or bogged down in
the details of AES, then you can go back and start with simplified AES.

131

rule: a/b = a(b~'). An example of a finite field (one with a finite number of elements)
is the set Z, consisting of all the integers {0, 1, ..., p — 1}, where p is a prime num-
ber and in which arithmetic is carried out modulo p.

Virtually all encryption algorithms, both conventional and public-key, involve
arithmetic operations on integers. If one of the operations used in the algorithm
is division, then we need to work in arithmetic defined over a field; this is because
division requires that each nonzero element have a multiplicative inverse. For con-
venience and for implementation efficiency, we would also like to work with inte-
gers that fit exactly into a given number of bits, with no wasted bit patterns. That is,
we wish to work with integers in the range 0 through 2" — 1, which fit into an n-bit
word. Unfortunately, the set of such integers, Z,, using modular arithmetic, is not a
field. For example, the integer 2 has no multiplicative inverse in Z,, that is, there is
no integer b, such that 2b mod 2" = 1.

There is a way of defining a finite field containing 2" elements; such a field is
referred to as GF(2"). Consider the set, S, of all polynomials of degree n — 1 or less
with binary coefficients. Thus, each polynomial has the form

n—1
f) = ay X"t ay X" agx +oag = D ax
=0

where each g; takes on the value 0 or 1. There are a total of 2" different polynomials
in . For n = 3, the 2> = 8 polynomials in the set are

0 x x2 X+ x
1 x+1 24+1 x*+x+1

With the appropriate definition of arithmetic operations, each such set S is a
finite field. The definition consists of the following elements.

Arithmetic follows the ordinary rules of polynomial arithmetic using the basic
rules of algebra with the following two refinements.

Arithmetic on the coefficients is performed modulo 2. This is the same as the
XOR operation.

If multiplication results in a polynomial of degree greater than n — 1, then the
polynomial is reduced modulo some irreducible polynomial m(x) of degree n.
That is, we divide by m(x) and keep the remainder. For a polynomial f(x), the
remainder is expressed as r(x) = f(x) modm(x). A polynomial m(x) is called
irreducible if and only if m(x) cannot be expressed as a product of two polyno-
mials, both of degree lower than that of m(x).

For example, to construct the finite field GF(2*), we need to choose an irre-
ducible polynomial of degree 3. There are only two such polynomials: (x* + x* + 1)
and (x> + x + 1). Addition is equivalent to taking the XOR of like terms. Thus,
x+1)+x=1

A polynomial in GF(2") can be uniquely represented by its n binary coeffi-
cients (a,,_1a,—» . . . ap). Therefore, every polynomial in GF(2") can be represented by
an n-bit number. Addition is performed by taking the bitwise XOR of the two n-bit
elements. There is no simple XOR operation that will accomplish multiplication in

132

GF(2"). However, a reasonably straightforward, easily implemented, technique is
available. In essence, it can be shown that multiplication of a number in GF(2") by 2
consists of a left shift followed by a conditional XOR with a constant. Multiplication by
larger numbers can be achieved by repeated application of this rule.

For example, AES uses arithmetic in the finite field GF(2%) with the
irreducible polynomial m(x) = x* + x* + x> + x + 1. Consider two elements
A = (aaq...may) and B = (b;bg...b1by). The sum A + B = (cycq. . . €1Cp),
where ¢; = a; ® b;. The multiplication {02}- A equals (ag. . . a1a40) if a; = 0 and
equals (ag. . . a;a00) @ (00011011) if a; = 1.2

To summarize, AES operates on 8-bit bytes. Addition of two bytes is defined as
the bitwise XOR operation. Multiplication of two bytes is defined as multiplication
in the finite field GF(2%), with the irreducible polynomial® m(x) = x® + x* + x>+
x + 1. The developers of Rijndael give as their motivation for selecting this one of
the 30 possible irreducible polynomials of degree 8 that it is the first one on the list
given in [LIDL94].

Figure 5.1 shows the overall structure of the AES encryption process. The cipher
takes a plaintext block size of 128 bits, or 16 bytes. The key length can be 16, 24, or
32 bytes (128,192, or 256 bits). The algorithm is referred to as AES-128, AES-192, or
AES-256, depending on the key length.

The input to the encryption and decryption algorithms is a single 128-bit block.
In FIPS PUB 197, this block is depicted as a 4 X 4 square matrix of bytes. This
block is copied into the State array, which is modified at each stage of encryption or
decryption. After the final stage, State is copied to an output matrix. These operations
are depicted in Figure 5.2a. Similarly, the key is depicted as a square matrix of bytes.
This key is then expanded into an array of key schedule words. Figure 5.2b shows the
expansion for the 128-bit key. Each word is four bytes, and the total key schedule
is 44 words for the 128-bit key. Note that the ordering of bytes within a matrix is by
column. So, for example, the first four bytes of a 128-bit plaintext input to the encryp-
tion cipher occupy the first column of the in matrix, the second four bytes occupy the
second column, and so on. Similarly, the first four bytes of the expanded key, which
form a word, occupy the first column of the w matrix.

The cipher consists of N rounds, where the number of rounds depends on the
key length: 10 rounds for a 16-byte key, 12 rounds for a 24-byte key, and 14 rounds
for a 32-byte key (Table 5.1). The first N — 1 rounds consist of four distinct transfor-
mation functions: SubBytes, ShiftRows, MixColumns, and AddRoundKey, which are
described subsequently. The final round contains only three transformations, and
there is a initial single transformation (AddRoundKey) before the first round, which
can be considered Round 0. Each transformation takes one or more 4 X 4 matrices

2In FIPS PUB 197, a hexadecimal number is indicated by enclosing it in curly brackets. We use that convention
in this chapter.
3In the remainder of this discussion, references to GF(2%) refer to the finite field defined with this polynomial.

5.2 / AES STRUCTURE 133

Plaintext—16 bytes (128 bits) Key—M bytes
LITTTTTITTITTITTI LITTTTTITTITTITTI
Input state Key
(16 bytes) Round 0 key (M bytes)
(16 bytes)
| Initial transformation :
State after
initial
transformation
(16 bytes)
Round 1 Round 1 key =
(4 transformations) (16 bytes) '5
g
2
=
%)
>
£
Round 1 -
output state
(16 bytes)
[]
[]
I
Round N -1 Rm?llgi)v ; l)key
(4 transformations) ytes
Round N -1
output state
(16 bytes)
Round N key
Round N (16 bytes)
(3 transformations)
Final state . Key
(16 bytes) No. of | ength
rounds (bytes)
I TIIIITT] 10 16
Cipehertext—16 bytes (128 bits) 12 2
14 32

Figure 5.1 AES Encryption Process

as input and produces a 4 X 4 matrix as output. Figure 5.1 shows that the output of
each round is a 4 X 4 matrix, with the output of the final round being the ciphertext.
Also, the key expansion function generates N + 1 round keys, each of which is a dis-
tinct 4 X 4 matrix. Each round key serves as one of the inputs to the AddRoundKey
transformation in each round.

147

ing | ing | ing | iny, 500 | o1 | Soz2 | So3 500 | o1 | So2 | So3 outy | out, | outg | out,
in; ins | ing | ing3 S10 | Sia | Siz2 | Si3 S10 | S| Siz2 | Si3 outy | outs | outy | outs
in, | ing | inyy | iny oo | o Lo | sn | 520 | S21 | S22 | S23 out, | outg |outyy | outy
iny | ing | ingy | ings 830 | 31 | 32 | $33 830 | 30 | 32 | $33 outy | out; |outyy | outs
(a) Input, state array, and output

ko ky wlw.! T T°T
ki | ks | ko | ki3

Wy | Wy | Wy ° Wyp | Wy3
ky | ke | kio | kis
ks ko | k| kis

(b) Key and expanded key

Figure 5.2 AES Data Structures

AES Parameters

135

Key Size (words/bytes/bits) 4/16/128 6/24/192 8/32/256
Plaintext Block Size (words/bytes/bits) 4/16/128 4/16/128 4/16/128
Number of Rounds 10 12 14
Round Key Size (words/bytes/bits) 4/16/128 4/16/128 4/16/128
Expanded Key Size (words/bytes) 44/176 52/208 60/240

Figure 5.3 shows the AES cipher in more detail, indicating the sequence of transfor-
mations in each round and showing the corresponding decryption function. As was
done in Chapter 3, we show encryption proceeding down the page and decryption

proceeding up the page.

Before delving into details, we can make several comments about the overall

AES structure.

One noteworthy feature of this structure is that it is not a Feistel structure.
Recall that, in the classic Feistel structure, half of the data block is used to
modify the other half of the data block and then the halves are swapped. AES
instead processes the entire data block as a single matrix during each round
using substitutions and permutation.

The key that is provided as input is expanded into an array of forty-four 32-bit
words, w[i]. Four distinct words (128 bits) serve as a round key for each round,;
these are indicated in Figure 5.3.

Four different stages are used, one of permutation and three of substitution:

Substitute bytes: Uses an S-box to perform a byte-by-byte substitution of
the block

ShiftRows: A simple permutation
MixColumns: A substitution that makes use of arithmetic over GF(2%)

AddRoundKey: A simple bitwise XOR of the current block with a portion
of the expanded key

The structure is quite simple. For both encryption and decryption, the
cipher begins with an AddRoundKey stage, followed by nine rounds that each
includes all four stages, followed by a tenth round of three stages. Figure 5.4
depicts the structure of a full encryption round.

Only the AddRoundKey stage makes use of the key. For this reason, the cipher
begins and ends with an AddRoundKey stage. Any other stage, applied at the
beginning or end, is reversible without knowledge of the key and so would add
no security.

The AddRoundKey stage is, in effect, a form of Vernam cipher and by itself
would not be formidable. The other three stages together provide confu-
sion, diffusion, and nonlinearity, but by themselves would provide no security
because they do not use the key. We can view the cipher as alternating opera-
tions of XOR encryption (AddRoundKey) of a block, followed by scrambling

136

CHAPTER 5 / ADVANCED ENCRYPTION STANDARD

Key
Plaintext (16 bytes) Plaintext
(16 bytes) [Expandkey | (16 bytes)
v t
| Add round key I: w0, 3] :I Add round key |
v -
| Substitute bytes | | Inverse sub bytes | ‘_;
y t s
— | Shift rows | | Inverse shift rows | ~
=
P == R e
&~ | Mix columns | _l | Inverse mix cols |
v 1
| Add round key I: wi4,7] :I Add round key |
! .
. | Inverse sub bytes | g
. &
° | Inverse shift rows |
v 1
| Substitute bytes | .
v .
~ | Shift rows | °
. ! t
§ | Mix columns | _l | Inverse mix cols |
v il
[Addroundkey Je———1 wI36,39] ———»] Addroundkey | —
I 1 :
| Substitute bytes | | Inverse sub bytes | E
= v
i | Shift rows | | Inverse shift rows |
£ 1
& v i

| Add round key |<— w[40, 43] —>| Add round key
v i}

Ciphertext Ciphertext
(16 bytes) (16 bytes)
(a) Encryption (b) Decryption

Figure 5.3 AES Encryption and Decryption

of the block (the other three stages), followed by XOR encryption, and so on.
This scheme is both efficient and highly secure.

. Each stage is easily reversible. For the Substitute Byte, ShiftRows, and

MixColumns stages, an inverse function is used in the decryption algorithm.
For the AddRoundKey stage, the inverse is achieved by XORing the same
round key to the block, using the result that A @ B @ B = A.

As with most block ciphers, the decryption algorithm makes use of the
expanded key in reverse order. However, the decryption algorithm is not

5.3 / AES TRANSFORMATION FUNCTIONS 137

State [I I I I I I I I I I I I I I I]

swoes: I MEOMNHOEHBEGEEGBEGEB G B

T e e
VAN N VAN B VAN BV
State [l_ll | \l_‘ [J_ll | \l_l | l_ll | \l_‘ | J_ll | \l_l |
ok DD DD DD DD D DD DD D 6

Figure 5.4 AES Encryption Round

identical to the encryption algorithm. This is a consequence of the particular
structure of AES.

9. Once it is established that all four stages are reversible, it is easy to verify
that decryption does recover the plaintext. Figure 5.3 lays out encryption
and decryption going in opposite vertical directions. At each horizontal point
(e.g., the dashed line in the figure), State is the same for both encryption and
decryption.

10. The final round of both encryption and decryption consists of only three stages.
Again, this is a consequence of the particular structure of AES and is required
to make the cipher reversible.

5.3 AES TRANSFORMATION FUNCTIONS

We now turn to a discussion of each of the four transformations used in AES. For
each stage, we describe the forward (encryption) algorithm, the inverse (decryption)
algorithm, and the rationale for the stage.

138

CHAPTER 5 / ADVANCED ENCRYPTION STANDARD

Substitute Bytes Transformation

FOorwARD AND INVERSE TransrormATIONS The forward substitute byte
transformation, called SubBytes, is a simple table lookup (Figure 5.5a). AES
defines a 16 X 16 matrix of byte values, called an S-box (Table 5.2a), that con-
tains a permutation of all possible 256 8-bit values. Each individual byte of State
is mapped into a new byte in the following way: The leftmost 4 bits of the byte
are used as a row value and the rightmost 4 bits are used as a column value.
These row and column values serve as indexes into the S-box to select a unique
8-bit output value. For example, the hexadecimal value {95} references row 9,
column 5 of the S-box, which contains the value {2A}. Accordingly, the value {95}
is mapped into the value {2A}.

Yy
y
X
> 1|
50,0 | Sod | Soz2 | So3 S-box 50,0 | Sow| Soz | So3
s s1 . L ,
S1,0 LUk o] 813 S1,0 L1 K5 S13
$20 | S2,1 | S22 | $23 520 | S2,1 | 522 | $23
530 | S3,1 | 32| S33 530 | S31 | 32| S33
(a) Substitute byte transformation
50,0 0.2 | S0.3
Wi 510 12| 513
@ Wi Viia| Wis3 =
S50 652 | $2.3
530 32| 533

(b) Add round key transformation
Figure 5.5 AES Byte-Level Operations

139

AES S-Boxes

S I E A N E R E R EEE
I A PR P E AR ENE Y A AR =N
RIFIBINIZIRIRIE|IRE||ZIB|T]R|3
SN R M EHEIM RS R
qlzlz|R B2 =858
s|2E|8818|25RRIZIE|R|S%]|8
SR A G A B E R S S
21T I5(R(E|2|R[3|2|8(8|B|=|8|
SIRISIZIZ|8|s|E|s|2|R|2(8]8 3|2
Hls|E|s|S R0 |8[32]|3(B(RE|HE|S
gl2|® (R |BIR|2|5|5|5|8|8|<|8|3 |3
o B A R N Sl R A ESE Y RS R R
BIRIS|SIZ|G|R|B|R]R|IS|E|8 8|28
SR I S FIEI M R R R
RISIBID|=|a|m|<|8|= | |T|R|H|E|<
2|S|g|2|3|n|8|= (B2 |B|R|S|=|= |8
ol=|a|n|d|vn|or|lo|lo|d@|OA M|~

(a) S-box

IR IE S EE R EIRELE
AR EEEEIE R AR EIE
pl8g|ale|g|g|=|del=(8]8|D]2|=
AR P E SIS R IS E R b
2T BI2|G|R|8(S|IC|BBIE|R|& RS
N P A ST RS A ST R
EIRIE|Z2R|ZER|R|IA|IS|EH|
AR G S R E R R G
25222515252 |2|:|=|8|8|8
2|EIQ|S|8(2|R|5(R|9(8|2|5|S|2|8
A M ESE IR R EERE
22288 R|2S %5888 |2|2|5
Ale|slelg|g(e|g|F Y |=(2(8(2|8 (R
I A EIFI I E RN EEEE
Y e N A R R A T SR N A R
SR8 (R(2|B|ZI85|R|=|8|2]|S
ol—=|aN|n | |wn|o~|lo|ja|<R|OAQ|H]| K

X

(b) Inverse S-box

140 CHAPTER 5/ ADVANCED ENCRYPTION STANDARD

Here is an example of the SubBytes transformation:

EA| 04 | 65 | &
83 | 45 | 5D | 96
5C | 33 | 98 | BO
FO | 2D | AD | G5

The S-box is constructed in the following fashion (Figure 5.6a).

Byte at row y,
column x
initialized to yx

yx

Inve!

rse

in GF(28)

0
0
1
1
1
1
1
0

U e = =)

S O~ = === O

S
o
o o —~ — = = =

y

Byte to bit
column vector

———_—_ 0 O O
——_ 0 O O =

—_ —_ 0 O O = = -

Bit column
vector to byte

y

S(yx)

—_— 0 O O = = =

(a) Calculation of byte at
row y, column x of S-box

Figure 5.6 Constuction of S-Box and IS-Box

Ior—ir—iooor—ir—i‘

87 | F2 | 4D | 97
EC | 6E | 4C | 90
4A | C3 | 46 | E7
8C | D8 | 95 | A6

Byte at row y,
column x yx
initialized to yx
y
Byte to bit

N
S = O O = O = O
—_ 0 O = O = O O
OO = O = OO =
S = O = O O = O

Inve

rse

in GF(2%)

column vector

—_ o = O O = O O
S = O O = O O =

Bit column
vector to byte

y

Y

IS(yx)

-0 O = O O = O

S O = O O = O =

(a) Calculation of byte at
row y, column x of IS-box

S O O O O = O =

141

Initialize the S-box with the byte values in ascending sequence row by row.
The first row contains {00}, {01}, {02}, ..., {OF}; the second row contains
{10}, {11}, etc.; and so on. Thus, the value of the byte at row y, column x is {yx}.
Map each byte in the S-box to its multiplicative inverse in the finite field
GF(2%); the value {00} is mapped to itself.

Consider that each byte in the S-box consists of 8 bits labeled (b7, bg, bs, by, bs,
by, by, by). Apply the following transformation to each bit of each byte in the
S-box:

bi’ = bi @ b(i+4) mod 8 @ b(HS) mod 8 @ b(i+6) mod 8 @ b(i+7) mod 8 @ Ci (5'1)

where ¢; is the ith bit of byte ¢ with the value {63}; that is, (c7cgcsc4c3¢0¢1¢0) =
(01100011). The prime (') indicates that the variable is to be updated by the
value on the right. The AES standard depicts this transformation in matrix
form as follows.

b} 1000 1 1 1 1][b 1
b] 1100 0 1 1 1]]b 1
b} 11100 0 1 1|]b 0
bi|_|1 1 1 100 0 1fby|, |0 52)
b, 1 11110 0 0l]b, 0
b! 01 1 1 1 1 0 0]]bs 1
b 001 1 1 1 1 0]]bg 1
b5 oo 0 1 1 1 1 1]|]|b] |O]

Equation (5.2) has to be interpreted carefully. In ordinary matrix multiplica-
tion,* each element in the product matrix is the sum of products of the elements
of one row and one column. In this case, each element in the product matrix is the
bitwise XOR of products of elements of one row and one column. Furthermore, the
final addition shown in Equation (5.2) is a bitwise XOR. Recall from Section 4.7
that the bitwise XOR is addition in GF(2®).

As an example, consider the input value {95}. The multiplicative inverse in
GF(2%) is {95)7! = {8A]}, which is 10001010 in binary. Using Equation (5.2),

= e e = -
el e = =
el e e e =R =R =R
i i =R == R e T e
—_ O OO =
_ O O O Rk O RO
[T S e Sl e B e B =N S
SO P, OO Rk OO KK
[« RN S e Sl e T e B =S S
SO R O Rk O - o

1
1
1
0
0
0
1
1

O OO R R E
S O R B PR eO

“For a brief review of the rules of matrix and vector multiplication, refer to Appendix E.

142

The result is {2A}, which should appear in row {09} column {05} of the S-box.
This is verified by checking Table 5.2a.

The inverse substitute byte transformation, called InvSubBytes, makes use
of the inverse S-box shown in Table 5.2b. Note, for example, that the input {2A}
produces the output {95}, and the input {95} to the S-box produces {2A}. The inverse
S-box is constructed (Figure 5.6b) by applying the inverse of the transformation in
Equation (5.1) followed by taking the multiplicative inverse in GF(2%). The inverse
transformation is

bi = b(i+2)mods @D b(i+5)ymods @ b(i+7)y moas @ d;

where byte d = {05}, or 00000101. We can depict this transformation as follows.

b 001 00 1 0 1][b 1
b} 1 00 1 00 1 0l|b 0
b; 0100 1 0 0 1]|by 1
bi|_|1 01 00 1 0 0fby|, |0
b 01 0 1 00 1 0l|b, 0
b! 001 01 0 0 1]]|bs 0
b 1 00 1 0 1 0 0}|bs 0
b5 o1 0 0 1 0 1 0f[b] |O]

To see that InvSubBytes is the inverse of SubBytes, label the matrices in
SubBytes and InvSubBytes as X and Y, respectively, and the vector versions of
constants ¢ and d as C and D, respectively. For some 8-bit vector B, Equation (5.2)
becomes B’ = XB @ C. We need to show that Y(XB @ C) @ D = B. To multiply
out, we must show YXB @ YC @ D = B. This becomes

001 0010 1][t 0001 1 1 1][b
1 001 0 0 1 0[[1T 1000 1 1 1|Bb
0100 1 00 1{[1 1 1 0 0 0 1 11||b
1 01 0 010 O0f[1 1 1 100 0 1]bs
0101001011111000b4®
001 01 00 1|/01 1 1 1 1 0 0]}]bs
1 001 01 0 O0[[0 01 1 1 1 1 0bg
0010 01 01 0J/00 0 1 1 1 1 1] bs]

[0 010 0 1 0 1|[1] [1]

1 001 0 0 1 0][1 0

01 001 0 0 110 1

1 01 0 0 1 0 0][0 0|

0101001 0llo®ol”

001 01 00 1]|1 0

1 001 01 0 0ff1 0

01 0 0 1 0 1 oJl0] [o]

143

1.0 00 0 0 0 0][b 1 1 by
01 000 0 0 0l|b 0 0 b,
001000 0 0l|b 1 1 b,
0000100 0nl®ol®0l|n

4 4
0000 0 1 0 0l|bs 0 0 bs
00 00 0 0 1 0]}|bg 0 0 be
000 00 00 0 1]lb] [0] Lo] [b]

We have demonstrated that YX equals the identity matrix, and the YC = D,
so that YC @ D equals the null vector.

The S-box is designed to be resistant to known cryptanalytic attacks.
Specifically, the Rijndael developers sought a design that has a low correlation
between input bits and output bits and the property that the output is not a linear
mathematical function of the input [DAEMO1]. The nonlinearity is due to the use
of the multiplicative inverse. In addition, the constant in Equation (5.1) was chosen
so that the S-box has no fixed points [S-box(a) = a] and no “opposite fixed points”
[S-box(a) = a], where @ is the bitwise complement of a.

Of course, the S-box must be invertible, that is, IS-box[S-box(a)] = a.
However, the S-box does not self-inverse in the sense that it is not true that
S-box(a) = IS-box(a). For example, S-box({95}) = {2A}, but IS-box({95}) = {AD}.

The forward shift row transformation,
called ShiftRows, is depicted in Figure 5.7a. The first row of State is not altered. For
the second row, a 1-byte circular left shift is performed. For the third row, a 2-byte
circular left shift is performed. For the fourth row, a 3-byte circular left shift is per-
formed. The following is an example of ShiftRows.

87 | F2 | 4D | 97 87 | F2 | 4D | 97
EC | 6E | 4C | 90 6E | 4C | 90 | EC
4A | C3 | 46 | E7 - 46 | E7 | 4A | C3
8C | D8 | 95 | A6 A6 | 8C | D8 | 95

The inverse shift row transformation, called InvShiftRows, performs the circu-
lar shifts in the opposite direction for each of the last three rows, with a 1-byte
circular right shift for the second row, and so on.

The shift row transformation is more substantial than it may first
appear. This is because the State, as well as the cipher input and output, is
treated as an array of four 4-byte columns. Thus, on encryption, the first 4 bytes
of the plaintext are copied to the first column of State, and so on. Furthermore,
as will be seen, the round key is applied to State column by column. Thus, a row
shift moves an individual byte from one column to another, which is a linear

144

CHAPTER 5 / ADVANCED ENCRYPTION STANDARD

$0.0 | So,1| S0.2 | S0.3 m $0.0 | So,1 | 0.2 | S0,3

S0 | S| S12| 513 St S12] S13 | S1,0

—— T T T —
52,0 52,1 [52,2 523 _’@_’ 522 (523 | 52,0 | 52,1
—~—~[T T 11—

83,0 [53,1 832|533 $33 [530 53,1 | 532
b4

(a) Shift row transformation

2311
12310 ||
1123
I_, 3112 {
S0.0 | S0.1 | So.2 | So.3 S0 | S0 | S6.2 | 63
SLo | S| S1,2] 813 SLo | Sta| si2|si3
$20 | $2.1 | S22 | $23 S30| 821 | S22 | 823
530|831 | 532 533 S50 S30 | S32 | 833

(b) Mix column transformation

Figure 5.7 AES Row and Column Operations

distance of a multiple of 4 bytes. Also note that the transformation ensures that
the 4 bytes of one column are spread out to four different columns. Figure 5.4
illustrates the effect.

MixColumns Transformation

FORWARD AND INVERSE TrANsFORMATIONS The forward mix column transformation,
called MixColumns, operates on each column individually. Each byte of a column
is mapped into a new value that is a function of all four bytes in that column. The
transformation can be defined by the following matrix multiplication on State
(Figure 5.7b):

02 03 01 o01 S00 So1 So2 So03 500 So1 S0z S03
01 02 03 01 S100 St1 S12 S13 | _ S10 St Si2 S13 (5.3)
01 01 02 03 20 S21 S22 523 $20 21 S22 Sh3
03 01 01 02 S30 831 S32 833 S0 S0 832 833

Each element in the product matrix is the sum of products of elements of one row

and one column. In this case, the individual additions and multiplications’ are

SWe follow the convention of FIPS PUB 197 and use the symbol ® to indicate multiplication over the
finite field GF(2%) and @ to indicate bitwise XOR, which corresponds to addition in GF(2%).

145

performed in GF(2%). The MixColumns transformation on a single column of State
can be expressed as

The following is an example of MixColumns:

87 F2 4D 97
6E 4C 90 EC
46 E7 4A C3
Ab 8C D8 95

=(2:50,) DB s51,) D5y, D3
= So,j@(z‘sl,j)@(3‘Sz,j@s3,j
= So,j@sl,j@(Z‘Sz,j)@(3‘s3,j)
= (350,) Ds1,; D2 D (2753

5.4

47 40 A3 4C
37 D4 70 9F
94 E4 3A 42
ED AS Ab BC

Let us verify the first column of this example. Recall from Section 4.7 that, in
GF(2%), addition is the bitwise XOR operation and that multiplication can be per-
formed according to the rule established in Equation (4.14). In particular, multipli-
cation of a value by x (i.e., by {02}) can be implemented as a 1-bit left shift followed
by a conditional bitwise XOR with (0001 1011) if the leftmost bit of the original
value (prior to the shift) is 1. Thus, to verify the MixColumns transformation on the
first column, we need to show that

({02} - {87}) ® ({03} - {6E}) ® {46} @ {A6} = {47}
{87) @ ({02} - {6E}) @ ({03} - {46}) © {A6} = {37)
{87) @ {6E} ® ({02} - {46}) @ ({03} - {A6)) = {94]

({03} - {87}) ® {6E} @ {46} ® ({02} - {A6}) = {ED}

For the first equation, we have {02} - {87} = (0000 1110) @ (0001 1011) =
(0001 0101) and {03}-{6E} = {6E} @ ({02} - {6E}) = (0110 1110) @ (1101 1100) =
(1011 0010). Then,

{02} - {87} = 0001 0101
{03}-{6E} = 1011 0010
{46) = 01000110
{A6) 1010 0110
0100 0111 = {47)

The other equations can be similarly verified.
The inverse mix column transformation, called InvMixColumns, is defined by
the following matrix multiplication:

OE 0B 0D 09 || S0 So1 So2 So3 500 S04 S02 03
09 O0E OB OD ||sio s11 S12 S13|_| S0 Si1 Si2 i3 5.5
0D 09 OE OB 20 S21 S22 523 ; Sz',b $31 S22 $3 -3
0B 0D 09 OE J[s30 s31 32 S$33 S30 S31 S 833

146

It is not immediately clear that Equation (5.5) is the inverse of Equation (5.3).
We need to show

OE 0B 0D 09 || 02 03 01 01 || So0 So1 Soz So3 S00 So1 So2 So03
09 OE 0B OD || 01 02 03 01 || s10 $11 S12 S13 | _ | S10 S11 S12 S13
0D 09 OE OB || 01 01 02 03 || s50 $21 $22 $23 B S0 $21 S22 23
0B OD 09 OE |[03 01 01 02 || s350 831 S32 833 530 S31 S32 S33

which is equivalent to showing

OE 0B OD 09 (/02 03 01 O1 1 0 0 O
09 OE OB OD | 01 02 03 01 _ 01 0 O (5.6)
0D 09 OE OB |[01 01 02 03 0 0 1 0
OB 0D 09 OE |03 01 01 02 0 0 0 1

That is, the inverse transformation matrix times the forward transformation
matrix equals the identity matrix. To verify the first column of Equation (5.6), we
need to show

{0E}-{02}) © {0B} @ {0D} ® ({09} - {03}) = {01}
{09} - {02}) @ {OE} ® {0B} ® ({0D} - {03}) = {00}
{0D} - {02}) @ {09} @ {0E} @ ({0B} - {03}) = {00}
{0B} - {02}) © {0D} @ {09} @ ({0E} - {03}) = {00}

For the first equation, we have {OE}-{02} = 00011100 and {09}-{03} =
{09} @ ({09} - {02}) = 00001001 @ 00010010 = 00011011. Then

AN AN AN AN

{OE}- {02} = 00011100
(0B} = 00001011
{0D} = 00001101
{09} - {03} = 00011011

00000001

The other equations can be similarly verified.

The AES document describes another way of characterizing the MixColumns
transformation, which is in terms of polynomial arithmetic. In the standard,
MixColumns is defined by considering each column of State to be a four-term poly-
nomial with coefficients in GF(2%). Each column is multiplied modulo (x* + 1) by
the fixed polynomial a(x), given by

a(x) = {03)x* + {01)x? + {01)}x + {02} (5.7)

Appendix SA demonstrates that multiplication of each column of State by
a(x) can be written as the matrix multiplication of Equation (5.3). Similarly, it
can be seen that the transformation in Equation (5.5) corresponds to treating

147

each column as a four-term polynomial and multiplying each column by b(x),
given by

b(x) = {0B}x® + {0D}x> + {09})x + {OE} (5.8)

It readily can be shown that b(x) = a~!(x) mod (x* + 1).

The coefficients of the matrix in Equation (5.3) are based on a linear
code with maximal distance between code words, which ensures a good mixing
among the bytes of each column. The mix column transformation combined with
the shift row transformation ensures that after a few rounds all output bits depend
on all input bits. See [DAEM99] for a discussion.

In addition, the choice of coefficients in MixColumns, which are all {01}, { 02},
or { 03}, was influenced by implementation considerations. As was discussed, multi-
plication by these coefficients involves at most a shift and an XOR. The coefficients
in InvMixColumns are more formidable to implement. However, encryption was
deemed more important than decryption for two reasons:

For the CFB and OFB cipher modes (Figures 6.5 and 6.6; described in Chapter 6),
only encryption is used.

As with any block cipher, AES can be used to construct a message authentica-
tion code (Chapter 12), and for this, only encryption is used.

In the forward add round key transfor-
mation, called AddRoundKey, the 128 bits of State are bitwise XORed with the 128
bits of the round key. As shown in Figure 5.5b, the operation is viewed as a colum-
nwise operation between the 4 bytes of a State column and one word of the round
key; it can also be viewed as a byte-level operation. The following is an example of
AddRoundKey:

47 | 40 | A3 | 4C AC| 19 | 28 | 57 EB | 59 | 8B | 1B
37 | D4 | 70 | 9F 77 | FA | D1 | 5C 40 | 2E | A1 | C3
94 | B4 |3A | 2 | @ 66 |DC| 29 | 00 | = | F2 | 38 | 13 | 42
ED | A5 | A6 | BC F3 | 21 | 41 | 6A 1E | 84 | E7 | D6

The first matrix is State, and the second matrix is the round key.
The inverse add round key transformation is identical to the forward add
round key transformation, because the XOR operation is its own inverse.

The add round key transformation is as simple as possible and affects
every bit of State. The complexity of the round key expansion, plus the complexity
of the other stages of AES, ensure security.

Figure 5.8 is another view of a single round of AES, emphasizing the mecha-
nisms and inputs of each transformation.

148 CHAPTER 5/ ADVANCED ENCRYPTION STANDARD

State matrix

at beginning

of round

S-box

02 03
01 02
01 01
03 01

01
03
02
01

MixColumns matrix

~

Constant inputs

%

]
|
-
(s
@

ShiftRows

U

MixColumns

i

AddRo

=]
‘—L=
]

-

Round
key

State matrix

at end

of round

Figure 5.8 Inputs for Single AES Round

5.4 AES KEY EXPANSION

Key Expansion Algorithm

\/-Y\J

Variable input

The AES key expansion algorithm takes as input a four-word (16-byte) key and
produces a linear array of 44 words (176 bytes). This is sufficient to provide a four-
word round key for the initial AddRoundKey stage and each of the 10 rounds of the
cipher. The pseudocode on the next page describes the expansion.

The key is copied into the first four words of the expanded key. The remain-
der of the expanded key is filled in four words at a time. Each added word w(i]
depends on the immediately preceding word, w[i — 1], and the word four positions
back, w[i — 4]. In three out of four cases, a simple XOR is used. For a word whose
position in the w array is a multiple of 4, a more complex function is used. Figure 5.9
illustrates the generation of the expanded key, using the symbol g to represent that
complex function. The function g consists of the following subfunctions.

149

KeyExpansion (byte key[16], word w[44])

{

word temp

for (1 = 0; 1 < 4; 1i++) wl[i] = (key[4*i], key[4*i+1],
key[4*i+2],
key[4*i+3]) ;

for (i = 4; 1 < 44; i++)

{

temp = w[i - 1];

if (i mod 4 = 0) temp = SubWord (RotWord (temp))

@ Rcon[i/4];
wl[i]l] = w[i-4] @ temp

}

ko | kg | kg | k12

ks | ke | k10| k14

ks | k7 | ky | kis By | B1 | B2 | B3

Wo | W1 | W2]| W3 Bl Bz B3 B0

A 4

M

N
A
=

0
=)
=)
=)

) 4 v
A

v v v (b) Function g
1 w

2| W13

Wao [W4

(a) Overall algorithm

AES Key Expansion

150

RotWord performs a one-byte circular left shift on a word. This means that an
input word [B, By, B,, B3] is transformed into [B;, B,, B3, Bg].

SubWord performs a byte substitution on each byte of its input word, using the
S-box (Table 5.2a).

The result of steps 1 and 2 is XORed with a round constant, Rconl[j].

The round constant is a word in which the three rightmost bytes are always 0.

Thus, the effect of an XOR of a word with Rcon is to only perform an XOR on the
leftmost byte of the word. The round constant is different for each round and is
defined as Rcon[j] = (RCJ[j], 0, 0, 0), with RC[1] = 1, RC[j] = 2-RC[j—1] and with
multiplication defined over the field GF(2%). The values of RC[j] in hexadecimal are

j 1 2 3 4 5 6 7 8 9 10

RC[j] 01 02 04 08 10 20 40 80 1B 36

For example, suppose that the round key for round 8 is

EA D273 21 B5 8D BA D2 31 2B F5 60 7F 8D 29 2F

Then the first 4 bytes (first column) of the round key for round 9 are calculated as

follows:
. . After After After XOR . w[i] = temp
i(decimal) | temp | b iword | subWord | RO [Gith Reon | YT | @ wii- 4]
36 7F8D292F | 8D292F7F | 5SDAS515D2 | 1B000000 | 46A515D2 |EAD27321| AC7766F3

The Rijndael developers designed the expansion key algorithm to be resistant to
known cryptanalytic attacks. The inclusion of a round-dependent round constant
eliminates the symmetry, or similarity, between the ways in which round keys are
generated in different rounds. The specific criteria that were used are [DAEM99]

Knowledge of a part of the cipher key or round key does not enable calcula-
tion of many other round-key bits.

An invertible transformation [i.e., knowledge of any Nk consecutive words of
the expanded key enables regeneration of the entire expanded key (Nk = key
size in words)].

Speed on a wide range of processors.
Usage of round constants to eliminate symmetries.

Diffusion of cipher key differences into the round keys; that is, each key bit
affects many round key bits.

Enough nonlinearity to prohibit the full determination of round key differ-
ences from cipher key differences only.

Simplicity of description.

151

The authors do not quantify the first point on the preceding list, but the idea
is that if you know less than Nk consecutive words of either the cipher key or one of
the round keys, then it is difficult to reconstruct the remaining unknown bits. The
fewer bits one knows, the more difficult it is to do the reconstruction or to deter-
mine other bits in the key expansion.

We now work through an example and consider some of its implications. Although
you are not expected to duplicate the example by hand, you will find it informative
to study the hex patterns that occur from one step to the next.
For this example, the plaintext is a hexadecimal palindrome. The plaintext,
key, and resulting ciphertext are

Plaintext:

0123456789abcdeffedcbad9876543210

Key:

0£1571c947d9e8590cb7add6af7£6798

Ciphertext:

£f0b844a0853bf7c6934ab4364148fb9

Table 5.3 shows the expansion of the 16-byte key into 10 round keys. As previously
explained, this process is performed word by word, with each four-byte word oc-
cupying one column of the word round-key matrix. The left-hand column shows

Key Expansion for AES Example

Key Words Auxiliary Function

w0 = 0f 15 71 c9 RotWord (w3) = 7f 67 98 af = x1

wl = 47 d9 e8 59 SubWord (x1) = d2 85 46 79 = yl

w2 = O0c b7 ad dé6 Rcon (1) = 01 00 00 00

w3 = af 7f 67 98 yl @ Rcon (1) = d3 85 46 79 = zl
wi=w0 @ z1= dc 90 37 bO RotWord (w7) = 81 15 a7 38 = x2

w5 =wdéd @ wl= 9b 49 df e9 SubWord (x2) = Oc 59 5c 07 = y2

w6 =w5 @ w2 =97 fe 72 3f Rcon (2) = 02 00 00 00

wl =w6 @ w3 = 38 81 15 a7 y2 @ Rcon (2) = Oe 59 5¢ 07 = z2
w8 = wi @ z2 =d2 c9 6b b7 RotWord (wll) = ff d3 c6 e6 = x3
w9 = w8 @w5 = 49 80 b4 5e SubWord (x3) = 16 66 b4 83 = y3

wl0 = w9 @ w6 = de 7e c6 61 Rcon (3) = 04 00 00 OO

wll = wl0 @ w7 = e6 £f d3 cé6 y3 @ Rcon (3) = 12 66 b4 8e = z3
wl2 = w8 @ z3 = c0 af df 39 RotWord (wl5) = ae 7e cO0 bl = x4
wl3 = wl2 Qw9 = 89 2f 6b 67 SubWord (x4) = e4 £3 ba c8 = y4

wld = wl3 @ wl0 = 57 51 ad 06 Rcon (4) = 08 00 00 00

wl5 = wld @ wll = bl ae 7e cO y4 @ Rcon (4) = ec £f3 ba c8 =4

(Continued)

152

Continued

Key Words

Auxiliary Function

RotWord(wl9) = 8c dd 50 43 = x5

wlé = wl2 @ z4 = 2c¢ 5¢c 65 £l

wl7 = wle Pwl3 = a5 73 Oe 96 SubWord(x5) = 64 cl 53 la = y5

wl8 = wl7 Dwls = £2 22 a3 90

Rcon(5) = 10 00 00 00

wl9 = wl8 @wl5 = 43 8c dd 50 y5 @ Rcon(5) = 74 cl1 53 la = z5

w20 = wl6 @ z5 = 58 9d 36 eb RotWord (w23) = 40 46 bd 4c = x6
w2l = w20 Pwl7 = £d ee 38 7d SubWord (x6) = 09 5a 7a 29 = y6
w22 = w2l D wl8 = 0f cc 9b ed Rcon(6) = 20 00 00 OO0

w23 = w22 @wl9 = 4c 40 46 bd y6 @ Rcon(6) = 29 5a 7a 29 = z6

w24 = w20 P z6 = 71 c7 4c c2 RotWord (w27) = a5 a9 ef cf = x7

w25 = w24 @ w2l = 8c 29 74 bf
w26 = w25 D w22 = 83 e5 ef 52
w27 = w26 Dw23 = cf a5 a9 ef

SubWord (x7) = 06 d3 bf 8a = y7
Rcon (7) = 40 00 00 00
y7 @ Rcon(7) = 46 d3 df 8a = z7

w28 = w24 @ z7 = 37 14 93 48

w29 = w28 @ w25 = bb 3d e7 £7
w30 = w29 ® w26 38 d8 08 a5
w3l = w30 P w27 = £7 7d al 4a

RotWord (w31l) = 7d al 4a £f7 = x8
SubWord (x8) = ff 32 dé6 68 = y8
Rcon (8) = 80 00 00 00

y8 @® Rcon(8) = 7f 32 d6 68 = z8

w32 = w28 @ z8 = 48 26 45 20
w33 = w32 Pw29 = £3 1b a2 47
w34 = w33 P w30 = cb c3 aa 72
w35 = w34 @ w32 = 3c be 0Ob 3

RotWord (w35) = be Ob 38 3c = x9
SubWord (x9) = ae 2b 07 eb = y9
Rcon (9) = 1B 00 00 00

y9 @ Rcon (9) = b5 2b 07 eb = z9

w36 = w32 P z9 = £d 0d 42 cb

w37 = w36 @ w33 = Oe 16 e0 1lc
w38 = w37 @ w34 = c5 d5 4a 6e
w39 = w38 D w35 = £9 6b 41 56

RotWord (w39) = 6b 41 56 £9 = x10
SubWord (x10) = 7£ 83 bl 99 = y10
Rcon (10) = 36 00 00 00

y10 @ Rcon (10) = 49 83 bl 99 = z10

w40 = w36 @ z10 = b4 8e £3 52
w4l = w40 @ w37 = ba 98 13 4e
w2 = w4l D w38 = 7£ 4d 59 20
w43 = wi2 Pw39 = 86 26 18 76

the four round-key words generated for each round. The right-hand column shows
the steps used to generate the auxiliary word used in key expansion. We begin, of
course, with the key itself serving as the round key for round 0.

Next, Table 5.4 shows the progression of State through the AES encryption
process. The first column shows the value of State at the start of a round. For the
first row, State is just the matrix arrangement of the plaintext. The second, third, and
fourth columns show the value of State for that round after the SubBytes, ShiftRows,
and MixColumns transformations, respectively. The fifth column shows the round
key. You can verify that these round keys equate with those shown in Table 5.3. The
first column shows the value of State resulting from the bitwise XOR of State after
the preceding MixColumns with the round key for the preceding round.

If a small change in the key or plaintext were to produce a corresponding small
change in the ciphertext, this might be used to effectively reduce the size of the

153

AES Example

Start of Round After SubBytes After ShiftRows | After MixColumns Round Key
01 89 fe 76 0f 47 Oc af
23 ab dc 54 15 d9 b7 7f
45 cd ba 32 71 e8 ad 67
67 ef 98 10 c9 59 d6 98
Oe ce f2 d9 ab 8b 89 35 ab 8b 89 35 b9 94 57 75 dec 9b 97 38
36 72 6b 2b 05 40 7f f1 40 7£ £1 05 e4 8e 16 51 90 49 fe 81
34 25 17 55 18 3f f0 fc f0 fc 18 3f 47 20 9a 3f 37 df 72 15
ae b6 4e 88 e4 4e 2f c4 c4 e4 4e 2f c5 dé6 £5 3b b0 e9 3f a7
65 0f c0 4d 4d 76 ba e3 4d 76 ba e3 8e 22 db 12 d2 49 de eé6
74 c7 e8 40 92 c6 9b 70 c6 9b 70 92 b2 f2 dc 92 c9 80 7e ff
70 £f e8 2a 51 16 9b e5 9b e5 51 16 df 80 £7 cl 6b b4 c6 d3
75 3f ca 9c 9d 75 74 de de 94 75 74 2d c5 1le 52 b7 5e 61 cé6
5¢c 6b 05 f4 4a 7f 6b bf 4a 7f 6b bf bl cl 0b cc c0 89 57 bl
7b 72 a2 64 21 40 3a 3c 40 3a 3c 21 ba £3 8b 07 af 2f 51 ae
b4 34 31 12 8d 18 c7 c9 c7 c9 8d 18 £f9 1f 6a c3 df 6b ad 7e
9a 9b 7f 94 b8 14 d2 22 22 b8 14 d2 1d 19 24 5c 39 67 06 cO
71 48 5c 7d a3 52 4a ff a3 52 4a ff d4 11 fe Of 2c a5 f2 43
15 dc da a9 59 86 57 d3 86 57 d3 59 3b 44 06 73 5¢ 73 22 8c
26 74 c7 bd £7 92 c6 7a c6 7a £7 92 cb ab 62 37 65 0e a3 dd
24 7e 22 9c 36 £3 93 de de 36 £3 93 19 b7 07 ec £1 96 90 50
£8 b4 Oc 4c 41 8d fe 29 41 8d fe 29 2a 47 c4 48 58 fd 0f 4c
67 37 24 ff 85 9a 36 16 9a 36 16 85 83 e8 18 ba 9d ee cc 40
ae a5 cl ea e4 06 78 87 78 87 e4 06 84 18 27 23 36 38 9b 46
e8 21 97 bc 9b fd 88 65 65 9b fd 88 eb 10 Oa £3 eb 7d ed bd
72 ba cb 04 40 f£4 1f f2 40 f£4 1f f2 7b 05 42 4a 71 8c 83 cf
le 06 d4 fa 72 6f 48 24 6f 48 24 72 le 40 20 40 c7 29 e5 a5
b2 20 bec 65 37 b7 65 4d 65 44 37 b7 94 83 18 52 4c 74 ef a9
00 6d e7 4e 63 3c 94 2f 2f 63 3c 94 94 c4 43 fb c2 bf 52 ef
0a 89 cl 85 67 a7 78 97 67 a7 78 97 ec la cO0 80 37 bb 38 £f7
d9 £9 c5 e5 35 99 a6 do 99 a6 d9 35 Oc 50 53 c7 14 3d d8 74
ds £7 £7 fb 61 68 68 Of 68 0f 61 68 3b d7 00 ef 93 e7 08 al
56 7b 11 14 bl 21 82 fa fa bl 21 82 b7 22 72 e0 48 f7 a5 4a
db al £8 77 b9 32 41 f5 b9 32 41 f5 bl la 44 17 48 f3 cb 3c
18 6d 8b ba ad 3c 34 f4 3c 3d f4 ad 3d 2f ec b6 26 1b c3 be
a8 30 08 4e c2 04 30 2f 30 2f c2 04 0a 6b 2f 42 45 a2 aa 0b
ff 45 47 aa 16 03 Oe ac ac 16 03 Oe 9f 68 £3 bl 20 d7 72 38
£f9 e9 8f 2b 99 le 73 f1 99 le 73 f1 31 30 3a c2 fd 0e c5 £9
1b 34 2f 08 af 18 15 30 18 15 30 af ac 71 8c c4 0d 16 d5 6b
4f c9 85 49 84 dd 97 3b 97 3b 84 dd 46 65 48 eb 42 e0 4a 41
bf bf 81 89 08 08 0c a7 a7 08 08 Oc 6a 1lc 31 62 cb 1lc 6e 56
cc 3e ff 3b 4b b2 16 e2 4b b2 16 e2 4b 86 8a 36 b4 ba 7f 86
al 67 59 af 32 85 cb 79 85 cb 79 32 bl cb 27 5a 8e 98 4d 26
04 85 02 aa £2 97 77 ac 77 ac £2 97 fb f2 f2 af £3 13 59 18
al 00 5f 34 32 63 cf 18 18 32 63 cf cc 5a 5b cf 52 4e 20 76
£ff 08 69 64

0b 53 34 14

84 bf ab 8f

4a 7c 43 b9

154

Avalanche Effect in AES: Change in Plaintext

Round Number of Bits
that Differ

012345678%9abcdeffedcba9876543210 1
0023456789abcdeffedcbad9876543210

0 0e3634aece7225b6£26b174ed92b5588 1
0f3634aece7225b6£26b1l74ed92b5588

1 657470750fc7£f£3fc0e8e8ca4dd02a9¢c 20
c4a9ad090fc7ff3fc0e8e8ca4dd02adc

2 5c7bb49a6b72349b05a2317££46d1294 58
fe2ae569f7ee8bb8clf5a2bb37e£53d5

3 7115262448dc747e5cdac7227da9bd9¢c 59
ec093dfb7c45343d689017507d485e62

4 £867aee8b437a5210c24cl974cffeabec 61
43efdb697244d£808e8d9364eelae6f5

5 721eb200ba06206dcbd4bce704fa654e 68
7b28a5d5ed643287e006c099bb375302

6 0ad9d85689£f9f77bclc5£71185e5fb14 64
3bc2d8b6798d8ac4fe36ald89lacl8la

7 db18a8ffal6d30d5£88b08d777badeaa 67
9fb8b5452023c70280e5c4bb9%e555a4b

8 £f91b4fbfe934c9bf8£f2£f85812b084989 65
20264el126b219aef7feb3£f9b2d6de40

9 ccal04al3e678500££59025f3bafaa34 61
b56a0341b2290ba7dfdfbddcd8578205

10 ££f0b844a0853b£f7c6934ab4364148£fb9 58
612b89398d0600cdell6227ce72433£0

plaintext (or key) space to be searched. What is desired is the avalanche effect, in
which a small change in plaintext or key produces a large change in the ciphertext.

Using the example from Table 5.4, Table 5.5 shows the result when the
eighth bit of the plaintext is changed. The second column of the table shows the
value of the State matrix at the end of each round for the two plaintexts. Note
that after just one round, 20 bits of the State vector differ. After two rounds,
close to half the bits differ. This magnitude of difference propagates through
the remaining rounds. A bit difference in approximately half the positions in the
most desirable outcome. Clearly, if almost all the bits are changed, this would be
logically equivalent to almost none of the bits being changed. Put another way, if
we select two plaintexts at random, we would expect the two plaintexts to differ
in about half of the bit positions and the two ciphertexts to also differ in about
half the positions.

Table 5.6 shows the change in State matrix values when the same plaintext is
used and the two keys differ in the eighth bit. That is, for the second case, the key is
0el571c947d9e8590cb7add6af7£6798. Again, one round produces a signifi-
cant change, and the magnitude of change after all subsequent rounds is roughly half
the bits. Thus, based on this example, AES exhibits a very strong avalanche effect.

155

Avalanche Effect in AES: Change in Key

Round Number of Bits
that Differ

0123456789%9abcdeffedcba9876543210 0
0123456789%9abcdeffedcba9876543210

0 0e3634aece7225b6£26b174ed92b5588 1
0f3634aece7225b6£26b174ed92b5588

1 657470750fc7££3fc0e8e8ca4dd02a9¢c 22
c5a9%ad090ec7ff3fcle8e8ca4cd02ad¢c

2 5¢7bb49a6b72349b05a2317££46d1294 58
90905fa9563356d15£3760£3b8259985

3 7115262448dc747e5cdac7227da9%bd9¢c 67
18aeb7aa794b3b66629448d575c7cebf

4 £867aee8b437a5210c24cl974cffeabec 63
£81015£993c978a876ae0l7cb49e7eec

5 721eb200ba06206dcbd4bce704fa654e 81
5955¢c91b4e769£f3cb4a94768e98d5267

6 0ad9d85689f9£f77bclc5£71185e5fbl4 70
dc60a24d137662181e45b8d3726b2920

7 db18a8ffal6d30d5£88b08d777badeaa 74
fe8343b8f88bef66cab7e977d005a03c

8 £91b4fbfe934c9bf8£f2£f85812b084989 67
da7dad581d1725¢5b72fa0£9d9d1366a

9 ccal04al3e678500££59025f3bafaa34 59
Occb4c66bbfd912£4b511d72996345e0

10 £f0b844a0853b£f7c6934ab4364148£fb9 53
£c8923ee501a7d207ab670686839996b

Note that this avalanche effect is stronger than that for DES (Table 3.2),
which requires three rounds to reach a point at which approximately half the bits
are changed, both for a bit change in the plaintext and a bit change in the key.

As was mentioned, the AES decryption cipher is not identical to the encryption
cipher (Figure 5.3). That is, the sequence of transformations for decryption differs
from that for encryption, although the form of the key schedules for encryption
and decryption is the same. This has the disadvantage that two separate software
or firmware modules are needed for applications that require both encryption and
decryption. There is, however, an equivalent version of the decryption algorithm
that has the same structure as the encryption algorithm. The equivalent version has
the same sequence of transformations as the encryption algorithm (with transfor-
mations replaced by their inverses). To achieve this equivalence, a change in key
schedule is needed.

156

Two separate changes are needed to bring the decryption structure in line
with the encryption structure. As illustrated in Figure 5.3, an encryption round has
the structure SubBytes, ShiftRows, MixColumns, AddRoundKey. The standard
decryption round has the structure InvShiftRows, InvSubBytes, AddRoundKey,
InvMixColumns. Thus, the first two stages of the decryption round need to
be interchanged, and the second two stages of the decryption round need to be
interchanged.

InvShiftRows affects the
sequence of bytes in State but does not alter byte contents and does not depend
on byte contents to perform its transformation. InvSubBytes affects the contents
of bytes in State but does not alter byte sequence and does not depend on byte
sequence to perform its transformation. Thus, these two operations commute and
can be interchanged. For a given State S,

InvShiftRows [InvSubBytes (S;)] = InvSubBytes [InvShiftRows (;)]

The transformations
AddRoundKey and InvMixColumns do not alter the sequence of bytes in State. If we
view the key as a sequence of words, then both AddRoundKey and InvMixColumns
operate on State one column at a time. These two operations are linear with respect
to the column input. That is, for a given State §; and a given round key w;,

InvMixColumns (S; @ w;) = [InvMixColumns (S;)] ® [InvMixColumns (w;)]

To see this, suppose that the first column of State S;is the sequence (yg, v1, y2, ¥3)
and the first column of the round key w; is (ko, k1, k, k3). Then we need to show

OE 0B OD 09 | [y, ® ko OE 0B 0D 09 |[y, OE 0B 0D 09 |[&
09 OE OB OD || yy@k | | 09 OE OB 0D || y, 09 OE 0B OD || k
0D 09 OE OB || y,®k,| |OD 09 OE OB ||y, Dl op 09 0E 0B || K
0B 0D 09 OE || y;®k; 0B 0D 09 OE || y; 0B 0D 09 OE || k;

Let us demonstrate that for the first column entry. We need to show

[{OE} - (yo @ ko)] @ [{0B} - (y1 @ k1)] @ [{0D} - (v; @ k2)] @ [{09} - (y3 @ ka)]
= [{OE} - yol @ [{0B} - y1] @ [{OD} - y,] ® [{09} - y3] ©
[{OE} - ko] © [{0B} - k1] ® [{0D} * kp] ® [{09} - k3]

This equation is valid by inspection. Thus, we can interchange AddRoundKey
and InvMixColumns, provided that we first apply InvMixColumns to the round
key. Note that we do not need to apply InvMixColumns to the round key for the
input to the first AddRoundKey transformation (preceding the first round) nor to
the last AddRoundKey transformation (in round 10). This is because these two
AddRoundKey transformations are not interchanged with InvMixColumns to pro-
duce the equivalent decryption algorithm.

Figure 5.10 illustrates the equivalent decryption algorithm.

5.6 / AES IMPLEMENTATION 157

Ciphertext

w[40, 43] [Addroundkey |

| Inverse sub bytes |

'

| Inverse shift rows |

'

| Inverse mix cols |

Round 1

| Inverse mix cols l— | Add round key |

—>w[36, 39] —T

| Inverse sub bytes |

'

| Inverse shift rows |

'

| Inverse mix cols |

Round 9

| Inverse mix cols |—>| Add round key |

w4, 7] T

| Inverse sub bytes |

'

| Expand key | | Inverse shift rows |

'

w[0, 3] | Addroundkey |

\

Key Plaintext

Round 10

Figure 5.10 Equivalent Inverse Cipher

Implementation Aspects

The Rijndael proposal [DAEM99] provides some suggestions for efficient implemen-
tation on 8-bit processors, typical for current smart cards, and on 32-bit processors,
typical for PCs.

8-Brr Processor AES can be implemented very efficiently on an 8-bit proces-
sor. AddRoundKey is a bytewise XOR operation. ShiftRows is a simple byte-
shifting operation. SubBytes operates at the byte level and only requires a table of
256 bytes.

The transformation MixColumns requires matrix multiplication in the field
GF(2%), which means that all operations are carried out on bytes. MixColumns only
requires multiplication by {02} and {03}, which, as we have seen, involved simple

158

shifts, conditional XORs, and XORs. This can be implemented in a more efficient
way that eliminates the shifts and conditional XORs. Equation set (5.4) shows the
equations for the MixColumns transformation on a single column. Using the iden-
tity {03} - x = ({02} - x) @ x, we can rewrite Equation set (5.4) as follows.

Tmp = 50,1@51,1@52,j@s3,j
56,j = So,j@ Tmp @ [2'(So,j®sl,j)]
51,; =51, @ Tmp ® [2+ (s1,; D 52,))]
Sé,j = Sz,j@ Tmp ® [2'(Sz,j@S3,/)]
Sé,j = 53,,‘@ Tmp ® [2'(33,]‘@')30,;‘)]

Equation set (5.9) is verified by expanding and eliminating terms.

The multiplication by {02} involves a shift and a conditional XOR. Such an im-
plementation may be vulnerable to a timing attack of the sort described in Section 3.4.
To counter this attack and to increase processing efficiency at the cost of some stor-
age, the multiplication can be replaced by a table lookup. Define the 256-byte table
X2, such that X2[i] = {02} -i. Then Equation set (5.9) can be rewritten as

= 80, D51, D52 D3

80,; = 80,; @ Tmp @ X2[sy ; D s1]
S1,j ® Tmp ® XZ[SL]‘ ® Sz,;‘]
$yc = 82, Tmp @ X2[s; ; D s3]
5, =583, @ Tmp @ X2[s3 ; D s ;]

The implementation described in the preceding subsection uses
only 8-bit operations. For a 32-bit processor, a more efficient implementation can
be achieved if operations are defined on 32-bit words. To show this, we first define
the four transformations of a round in algebraic form. Suppose we begin with a
State matrix consisting of elements ; ; and a round-key matrix consisting of ele-
ments k; ;. Then the transformations can be expressed as follows.

(5.9)

Tmp

!
S],c

SubBytes bi; = Sla;]
Co,j by,
i by i
ShiftRows Zl‘/ _ bl,] 1
2,j 2,j-2
G,j b33
do, 02 03 01 01 co;
MixCol dij| _ |01 02 03 01} cy;
o da,j 01 01 02 03| ¢y
ds ; 03 01 01 02][cs;
60’]' d[)] k(],]
enj | _ | du ki
AddRoundKey iy oy @ b
€3, ds,j ks

5.7 / RECOMMENDED READING

159

In the ShiftRows equation, the column indices are taken mod 4. We can com-
bine all of these expressions into a single equation:

e, 02 03 o1
er;| |01 02 03 o1
e 01 01 02 03
e |03 01 01 02|
Foo
01
= 01 : S[ao, j] ®
L 03]
o1
01
® 03 | S[as, ;3]

01 |

S[ap,j]
S[al,j—l]
S[ay, 2]
S[as ;3]
03

02
01

@

* S[al,];

01
03
02
01

. S[az, j72]

In the second equation, we are expressing the matrix multiplication as a linear com-
bination of vectors. We define four 256-word (1024-byte) tables as follows.

02
01
01
03

Tolx] =

“S[x] || Tilx] =

03
02
01
01

- S[x]

Dlx] =

*S[x]

01
01
03
02

Glx] = *S[x]

Thus, each table takes as input a byte value and produces a column vector (a 32-bit
word) that is a function of the S-box entry for that byte value. These tables can be
calculated in advance.

We can define a round function operating on a column in the following fashion.

50,j fo.
s1 k.

= Tilso 1 @ Tils 1] @ Dolsa, 2] @ Tilss 5] @ kly]
Sz,j >
83 .

As a result, an implementation based on the preceding equation requires only
four table lookups and four XORs per column per round, plus 4 Kbytes to store the
table. The developers of Rijndael believe that this compact, efficient implementation
was probably one of the most important factors in the selection of Rijndael for AES.

5.7 RECOMMENDED READING

The most thorough description of AES so far available is the book by the developers of AES,
[DAEMO02]. The authors also provide a brief description and design rationale in [DAEMO1].
[LANDO4] is a rigorous mathematical treatment of AES and its cryptanalysis.

160 CHAPTER 5/ ADVANCED ENCRYPTION STANDARD

Another worked-out example of AES operation, authored by instructors at Massey U.,
New Zealand, is available at this book’s Premium Content Web site.

DAEMO01 Daemen, J., and Rijmen, V. “Rijndael: The Advanced Encryption Standard.”
Dr. Dobb’s Journal, March 2001.

DAEMO02 Daemen, J, and Rijmen, V. The Design of Rijndael: The Wide Trail Strategy
Explained. New York: Springer-Verlag, 2002.

LANDO04 Landau, S. “Polynomials in the Nation’s Service: Using Algebra to Design the
Advanced Encryption Standard.” American Mathematical Monthly, February 2004.

5.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
Advanced Encryption finite field National Institute of Standards
Standard (AES) irreducible and Technology (NIST)
avalanche effect polynomial Rijndael
field key expansion S-box

Review Questions

5.1 What was the original set of criteria used by NIST to evaluate candidate AES ciphers?
5.2 What was the final set of criteria used by NIST to evaluate candidate AES ciphers?
5.3 What is the difference between Rijndael and AES?
5.4 What is the purpose of the State array?
5.5 How is the S-box constructed?
5.6 Briefly describe SubBytes.
5.7 Briefly describe ShiftRows.
5.8 How many bytes in State are affected by ShiftRows?
5.9 Briefly describe MixColumns.

5.10 Briefly describe AddRoundKey.

5.11 Briefly describe the key expansion algorithm.

5.12 What is the difference between SubBytes and SubWord?

5.13 What is the difference between ShiftRows and RotWord?

5.14 What is the difference between the AES decryption algorithm and the equivalent

inverse cipher?
Problems

5.1 In the discussion of MixColumns and InvMixColumns, it was stated that
b(x) = a”'(x)mod (x* + 1)
where a(x) = {03)x® + {01}x? + {01}x + {02} and b(x) = {0B}x’> + {0D}x> + {09)x +
{OE}. Show that this is true.
52 a. Whatis {01}~ in GF(2%)?
b. Verify the entry for {01} in the S-box.

161

Show the first eight words of the key expansion for a 128-bit key of all zeros.
Given the plaintext {000102030405060708090A0BOCODOEOF} and the key
{01010101010101010101010101010101}:

Show the original contents of State, displayed as a 4 X 4 matrix.

Show the value of State after initial AddRoundKey.

Show the value of State after SubBytes.

Show the value of State after ShiftRows.

Show the value of State after MixColumns.
Verify Equation (5.11). That is, show that x'mod (x* + 1) = x/mod4,
Compare AES to DES. For each of the following elements of DES, indicate the com-
parable element in AES or explain why it is not needed in AES.

XOR of subkey material with the input to the f function

XOR of the f function output with the left half of the block

f function

permutation P

swapping of halves of the block
In the subsection on implementation aspects, it is mentioned that the use of tables
helps thwart timing attacks. Suggest an alternative technique.
In the subsection on implementation aspects, a single algebraic equation is developed
that describes the four stages of a typical round of the encryption algorithm. Provide
the equivalent equation for the tenth round.
Compute the output of the MixColumns transformation for the following sequence
of input bytes “67 89 AB CD.” Apply the InvMixColumns transformation to the
obtained result to verify your calculations. Change the first byte of the input from
“67” to “77” perform the MixColumns transformation again for the new input, and
determine how many bits have changed in the output.
Note: You can perform all calculations by hand or write a program support-
ing these computations. If you choose to write a program, it should be written
entirely by you; no use of libraries or public domain source code is allowed in this
assignment.
Use the key 1010 0111 0011 1011 to encrypt the plaintext “ok” as expressed in ASCII
as 0110 1111 0110 1011. The designers of S-AES got the ciphertext 0000 0111 0011
1000. Do you?
Show that the matrix given here, with entries in GF(2%), is the inverse of the matrix
used in the MixColumns step of S-AES.

<x3 +1 X)

X X +1
Carefully write up a complete decryption of the ciphertext 0000 0111 0011 1000 using
the key 1010 0111 0011 1011 and the S-AES algorithm. You should get the plaintext
we started with in Problem 5.10. Note that the inverse of the S-boxes can be done
with a reverse table lookup. The inverse of the MixColumns step is given by the ma-
trix in the previous problem.
Demonstrate that Equation (5.9) is equivalent to Equation (5.4).

Create software that can encrypt and decrypt using S-AES. Test data: A binary
plaintext of 0110 1111 0110 1011 encrypted with a binary key of 1010 0111 0011 1011
should give a binary ciphertext of 0000 0111 0011 1000. Decryption should work
correspondingly.

Implement a differential cryptanalysis attack on 1-round S-AES.

162

CHAPTER 5 / ADVANCED ENCRYPTION STANDARD

APPENDIX 5A POLYNOMIALS WITH COEFFICIENTS IN GF(ZS)

In Section 4.5, we discussed polynomial arithmetic in which the coefficients arein Z,
and the polynomials are defined modulo a polynomial M(x) whose highest power
is some integer n. In this case, addition and multiplication of coefficients occurred
within the field Z,; that is, addition and multiplication were performed modulo p.

The AES document defines polynomial arithmetic for polynomials of degree 3
or less with coefficients in GF(2®). The following rules apply.

1. Addition is performed by adding corresponding coefficients in GF(2%). As was
pointed out Section 4.5, if we treat the elements of GF(2®) as 8-bit strings, then
addition is equivalent to the XOR operation. So, if we have

a(x) = a3x3 + ax® + aix + ag (5.10)
and
b(x) = bsx® + byx*> + bix + by (5.11)
then
a(x) + b(x) = (a3 @ b3)x* + (4 ® bo)x* + (a1 @ by)x + (ag @ bo)

2. Multiplication is performed as in ordinary polynomial multiplication with two
refinements:

a. Coefficients are multiplied in GF(2%).
b. The resulting polynomial is reduced mod (x* + 1).

We need to keep straight which polynomial we are talking about. Recall from
Section 4.6 that each element of GF(2%) is a polynomial of degree 7 or less with binary
coefficients, and multiplication is carried out modulo a polynomial of degree 8.
Equivalently, each element of GF(2®) can be viewed as an 8-bit byte whose bit val-
ues correspond to the binary coefficients of the corresponding polynomial. For the
sets defined in this section, we are defining a polynomial ring in which each ele-
ment of this ring is a polynomial of degree 3 or less with coefficients in GF(2%), and
multiplication is carried out modulo a polynomial of degree 4. Equivalently, each
element of this ring can be viewed as a 4-byte word whose byte values are elements
of GF(2®) that correspond to the 8-bit coefficients of the corresponding polynomial.

We denote the modular product of a(x) and b(x) by a(x) ® b(x). To com-
pute d(x) = a(x) ® b(x), the first step is to perform a multiplication without the
modulo operation and to collect coefficients of like powers. Let us express this as
c(x) = a(x) X b(x). Then

c(x) = cgx® + csx® + cx* + e + ex® + cx + ¢ 5.12)
where
Co = ay* by ¢y = (a3 by) @ (ay* b)) @ (a; * b3)
c1 = (a1 by) D (ag* by) ¢s = (az*by) @ (ay+ b3)
¢, = (ay*bo) @ (a1 b1) D (ag* by) Ce = az*bs

c3 = (az*by) @ (ay* b)) @ (a;* by) @ (ap* b3)

163

The final step is to perform the modulo operation
d(x) = c(x) mod (x* + 1)
That is, d(x) must satisfy the equation
c(x) = [(x* + 1) X g(x)] D d(x)

such that the degree of d(x) is 3 or less.
A practical technique for performing multiplication over this polynomial ring
is based on the observation that

x'mod (x* + 1) = ximod4 (5.13)
If we now combine Equations (5.12) and (5.13), we end up with
d(x) = c(x) mod (x* + 1)
= [cex® + csx® + cpx* + 33 + ox? + cix + ¢l mod (x* + 1)
= o8 + (@ ¥ + (c1 D es)x + (co D cq)
Expanding the c; coefficients, we have the following equations for the coef-
ficients of d(x).
do = (ap*bo) ® (a3 b1) @ (azby) D (a; - b3)
d; = (a1 bo) @ (ap*by) @ (a3 by) @ (ay b3)
dy = (ay+bo) @ (a1 b1) @ (ap*by) D (as - b3)
d; = (a3*bo) @ (ar*by) @ (a1 by) @ (ag - b3)

This can be written in matrix form:

dy a a3 a; o by
dy a a as I b,
= (5.14)
dz [25) aq Clo Cl3 b2
ds a @ a; 4 bs

In the discussion of MixColumns, it was stated that there were two equivalent
ways of defining the transformation. The first is the matrix multiplication shown in
Equation (5.3), which is repeated here:

02 03 01 01 So,0 So,1 So,2 0,3 50,0 S0,1 S0,2 S0,3
01 02 03 01 S0 S, S22 81,3 Sto SL1 SL2 SL3
01 01 02 03||sy0 S21 S22 S23| |[Sho shi sho sh3
03 01 01 02 $3,0 S$3,1 83,2 933 $30 S31 832 833

The second method is to treat each column of State as a four-term polynomial
with coefficients in GF(2%). Each column is multiplied modulo (x* + 1) by the fixed
polynomial a(x), given by

a(x) = {03)x° + {01}x? + {01)}x + {02}

164 CHAPTER 5/ ADVANCED ENCRYPTION STANDARD

From Equation (5.10), we have a3 = {03}; a, = {01}; ¢ = {01}; and ay = {02}.
For the jth column of State, we have the polynomial coli(x) = s3,]-x3 +
sz,sz + s51;X + Soj. Substituting into Equation (5.14), we can express
d(x) = a(x) X coly(x) as

dy a a3 a a || o 02 03 01 01 ||sp;
di| _|a a a3 a||s;|_|01 02 03 01 1
d, a a ay az|| s 01 01 02 03 ||s;
ds a a a ay]| s3; 03 01 01 02[s3;

which is equivalent to Equation (5.3).

Multiplication by x
Consider the multiplication of a polynomial in the ring by x: c(x) = x @ b(x). We have

c(x) = x ® b(x) = [x X (b3x® + byx? + byx + byl mod (x* + 1)
= (byx* + bx® + bx? + bgx) mod (x* + 1)
= box® + byx? + byx + b;

Thus, multiplication by x corresponds to a 1-byte circular left shift of the 4 bytes in
the word representing the polynomial. If we represent the polynomial as a 4-byte
column vector, then we have

co 00 00 00 O1][b,
ci| |01 00 00 00| b
e | |00 01 00 00| b,
e 00 00 01 00 || bs

APPENDIX 5B SIMPLIFIED AES

Simplified AES (S-AES) was developed by Professor Edward Schaefer of Santa Clara
University and several of his students [MUSAO03]. It is an educational rather than
a secure encryption algorithm. It has similar properties and structure to AES with
much smaller parameters. The reader might find it useful to work through an example
by hand while following the discussion in this appendix. A good grasp of S-AES will
make it easier for the student to appreciate the structure and workings of AES.

Overview

Figure 5.11 illustrates the overall structure of S-AES. The encryption algorithm
takes a 16-bit block of plaintext as input and a 16-bit key and produces a 16-bit
block of ciphertext as output. The S-AES decryption algorithm takes an 16-bit
block of ciphertext and the same 16-bit key used to produce that ciphertext as input
and produces the original 16-bit block of plaintext as output.

165

ENCRYPTION DECRYPTION
16-bit plaintext 16-bit key 16-bit plaintext
| Add round key I w[0, 1] | Add round key |
™
| Nibble substitution | | Expand key | | Inverse nibble sub | %
1 ~
— | Shift row | | Inverse shift row |
R ey (L I E
~ | Mix columns | _l | Inverse mix cols |
Y 4
| Add round key I w[2, 3] | Add round key | —
9
=
| Nibble substitution | | Inverse nibble sub | é
o Y 4
E | Shift row | _l | Inverse shift row |
& Y 1

| Add round key l(— wl4,5] —— | Add round key |
\

16-bit ciphertext 16-bit ciphertext

S-AES Encryption and Decryption

The encryption algorithm involves the use of four different functions, or trans-
formations: add key (Ag), nibble substitution (NS), shift row (SR), and mix column
(MC), whose operation is explained subsequently.

We can concisely express the encryption algorithm as a composition
of functions:

6

Ak,°SReNS©o Ay o MCoSRoNSo Ay,

so that Ag, is applied first.

The encryption algorithm is organized into three rounds. Round 0 is simply an
add key round; round 1 is a full round of four functions; and round 2 contains only
3 functions. Each round includes the add key function, which makes use of 16 bits of
key. The initial 16-bit key is expanded to 48 bits, so that each round uses a distinct
16-bit round key.

Each function operates on a 16-bit state, treated as a 2 X 2 matrix of nib-
bles, where one nibble equals 4 bits. The initial value of the State matrix is the
16-bit plaintext; State is modified by each subsequent function in the encryption pro-
cess, producing after the last function the 16-bit ciphertext. As Figure 5.12a shows,
the ordering of nibbles within the matrix is by column. So, for example, the first
8 bits of a 16-bit plaintext input to the encryption cipher occupy the first column
of the matrix, and the second 8§ bits occupy the second column. The 16-bit key is

Definition: If f and g are two functions, then the function F with the equation y = F(x) = g[f(x)] is
called the composition of f and g and is denotedas F = g o f.

166

S0,0{S0,1
bob1b;bs bsbob1ob11
S10(S
bubsbeb; biabisbuabis LO|9L1
Bit representation Nibble representation
(a) State matrix
Original key Key expansion

—A— A

kok1kakskskskeks kskokioky1k12ky3k14k15 Wo | W | W2 | W3 | W4 | W5
Bit representation [———— G
Ko K K

Byte representation
(b) Key

S-AES Data Structures

similarly organized, but it is somewhat more convenient to view the key as two bytes
rather than four nibbles (Figure 5.12b). The expanded key of 48 bits is treated as
three round keys, whose bits are labeled as follows: Ky = ky... ki5; K1 = kig ... kap;
and K2 = k32 e k47.
Figure 5.13 shows the essential elements of a full round of S-AES.
Decryption is also shown in Figure 5.11 and is essentially the reverse of
encryption:

Ak, °INSeISR°IMCo Ay oINS ISR © A,

in which three of the functions have a corresponding inverse function: inverse nib-
ble substitution (INS), inverse shift row (ISR), and inverse mix column (IMC).

We now look at the individual functions that are part of the encryption algorithm.

The add key function consists of the bitwise XOR of the 16-bit State
matrix and the 16-bit round key. Figure 5.14 depicts this as a columnwise operation,
but it can also be viewed as a nibble-wise or bitwise operation. The following is an
example.

A 4 2 5 8 1
@ =
7 9 D 5 A C
State matrix Key

The inverse of the add key function is identical to the add key function,
because the XOR operation is its own inverse.

L9T

Add key

S

=

~
)

Nibble Shift Mix
substitution row column

S0, S S0, S0, — | S0,

M
Sl,O S Sl,O \/ Sl,O / \ Sl,O
So.1 S So.1 So.1 | | __— So.1
Sia S Sia Sia — IS Sia

State State State State

Figure 5.13 S-AES Encryption Round

& df

State

168

CHAPTER 5 / ADVANCED ENCRYPTION STANDARD

X H Nibble
u substitution
500 | So, 500 | So Shift
N\ row
S10 | S11 —»l:l:|—> S11 | S10
N\
14
X =
I—» 41 *
S0,0 | So0,1 S0,0 | So,1 Mix
column
510 | 511 st | S
50,0 | So,1 50,0 | So,1 Add
) Wi | Wiy key
S1,0 | S1,1 S0 | S11

Figure 5.14 S-AES Transformations

Nissre Susstrturion The nibble substitution function is a simple table lookup
(Figure 5.14). AES defines a 4 X 4 matrix of nibble values, called an S-box
(Table 5.7a), that contains a permutation of all possible 4-bit values. Each individ-
ual nibble of State is mapped into a new nibble in the following way: The leftmost
2 bits of the nibble are used as a row value, and the rightmost 2 bits are used as
a column value. These row and column values serve as indexes into the S-box to
select a unique 4-bit output value. For example, the hexadecimal value A references
row 2, column 2 of the S-box, which contains the value 0. Accordingly, the value A is
mapped into the value 0.
Here is an example of the nibble substitution transformation.

8 1 6
A C C

The inverse nibble substitution function makes use of the inverse S-box shown
in Table 5.7b. Note, for example, that the input 0 produces the output A, and the
input A to the S-box produces 0.

169

S-AES S-Boxes

]]
00 01 10 11 00 01 10 11
00 9 4 A B 00 A 5 9 B
loa|bp |1]38 s a1 78| F
"Tww]se | 203 "Tww|e o] 2] 3
11 C E F 7 11 C 4 D E
(a) S-Box (b) Inverse S-Box

Note: Hexadecimal numbers in shaded boxes; binary numbers in unshaded boxes.

The shift row function performs a one-nibble circular shift of the sec-
ond row of State the first row is not altered (Figure 5.14). The following is an
example.

4 6
C C

The inverse shift row function is identical to the shift row function, because it
shifts the second row back to its original position.

The mix column function operates on each column individually. Each
nibble of a column is mapped into a new value that is a function of both nibbles in
that column. The transformation can be defined by the following matrix multiplica-
tion on State (Figure 5.14):

[1 4} [So,o 30,1} _ [S'o,o Sb,l]
4 1]Llsio s sho St
Performing the matrix multiplication, we get

56,0 = So,o ® 4 51,0)

Si,o =4 So,o) ® 51,0

So1 = So1 D (4-811)

5'1,1 = (4 501,) ® 51,1

Where arithmetic is performed in GF(2*), and the symbol e refers to multiplication
in GF(2*). Appendix I provides the addition and multiplication tables. The follow-

The inverse mix column function is defined as

! !
[9 2“30,0 50,1]:{30,0 SO,I}
! !
2 9llsio s 51,0 S11

170

CHAPTER 5 / ADVANCED ENCRYPTION STANDARD

We demonstrate that we have indeed defined the inverse in the following

fashion.
[9 2M1 4}[50,0 50,1] _ {1 0:|[SO,O SO,]} _ [50,0 50,1]
2 9114 1 SI,O Sl,l 0 1 Sl,O Sl,l SI,O S1,1
The preceding matrix multiplication makes use of the following results in
GF(2"):9+ (2-4)=9+8=1 and (9+4) +2=2+2=0. These opera-
tions can be verified using the arithmetic tables in Appendix I or by polynomial
arithmetic.

The mix column function is the most difficult to visualize. Accordingly, we
provide an additional perspective on it in Appendix L.

Key Expansion For key expansion, the 16 bits of the initial key are grouped into a
row of two 8-bit words. Figure 5.15 shows the expansion into six words, by the calcu-
lation of four new words from the initial two words. The algorithm is

w
g
wy | w No | N
~©®
D /ﬁ? N | N
W, wWs —>@
N | Ny
< > 2 0
VA
wy | ws w'
(a) Overall algorithm (b) Function g

Figure 5.15 S-AES Key Expansion

171

wy = wy @D g(wy) = wy @ Rceon(1) @ SubNib(RotNib(w,))
w3 = wy @ wy
wy = wy @D g(wz) = wy, @ Reon(2) @ SubNib(RotNib(ws))

Ws = Wy @ ws

Rcon is a round constant, defined as follows: RC[i] = x'*2, so that RC[1] =
x*>=1000 and RC[2] = x*mod(x* + x + 1) = x + 1 = 0011. RC[i]] forms
the leftmost nibble of a byte, with the rightmost nibble being all zeros. Thus,
Rcon(1) = 10000000 and Rcon(2) = 00110000.

For example, suppose the key is 2D55 = 0010 1101 0101 0101 = wyw;.
Then

w, = 00101101 @ 10000000 @ SubNib(01010101)

= 00101101 @ 10000000 @ 00010001 = 10111100
ws 10111100 @ 01010101 = 11101001
w, = 10111100 @ 00110000 @ SubNib(10011110)

= 10111100 @ 00110000 @ 00101111 = 10100011
ws = 10100011@ 11101001 = 01001010

The S-box is constructed as follows:

Initialize the S-box with the nibble values in ascending sequence row by row.
The first row contains the hexadecimal values (0, 1, 2, 3); the second row con-
tains (4, 5, 6, 7); and so on. Thus, the value of the nibble at row i, column j is
4i + j.

Treat each nibble as an element of the finite field (2*) modulo x* + x + 1.
Each nibble gy a; a, a; represents a polynomial of degree 3.

Map each byte in the S-box to its multiplicative inverse in the finite field
GF(2*) modulo x* + x + 1; the value 0 is mapped to itself.

Consider that each byte in the S-box consists of 4 bits labeled (b, by, by, b3).
Apply the following transformation to each bit of each byte in the S-box. The
AES standard depicts this transformation in matrix form as

b} 1 0 1 1][b 1
bi| |1 1 0 1| b 0
b5 |1 1 1 05, D1y
b} 0 1 1 1| bs 1

The prime (') indicates that the variable is to be updated by the value on
the right. Remember that addition and multiplication are being calculated
modulo 2.

Table 5.7a shows the resulting S-box. This is a nonlinear, invertible matrix. The inverse
S-box is shown in Table 5.7b.

172

We can now examine several aspects of interest concerning the structure of AES.
First, note that the encryption and decryption algorithms begin and end with the
add key function. Any other function, at the beginning or end, is easily reversible
without knowledge of the key and so would add no security but just a processing
overhead. Thus, there is a round 0 consisting of only the add key function.

The second point to note is that round 2 does not include the mix column
function. The explanation for this in fact relates to a third observation, which
is that although the decryption algorithm is the reverse of the encryption algo-
rithm, as clearly seen in Figure 5.11, it does not follow the same sequence of
functions. Thus,

Encryption: Ag,°SReNSoAg o MCoSReNSo Ay,
Decryption: Ak, °INS ISR e IMCe Ag oINS ISR o Ag,

From an implementation point of view, it would be desirable to have the
decryption function follow the same function sequence as encryption. This allows
the decryption algorithm to be implemented in the same way as the encryption algo-
rithm, creating opportunities for efficiency.

Note that if we were able to interchange the second and third functions, the
fourth and fifth functions, and the sixth and seventh functions in the decryption
sequence, we would have the same structure as the encryption algorithm. Let’s see if

this is possible. First, consider the interchange of INS and ISR. Given a state N con-
sisting of the nibbles (Ny, N1, N,, N3), the transformation INS(ISR(N)) proceeds as

o B v B v)

Where IS refers to the inverse S-Box. Reversing the operations, the transfor-
mation ISR(INS(N) proceeds as

(No Nz)_)<IS[N0] IS[N2]>_)<IS[N0] IS[N2]>
Ny N3 IS[N;] IS[N5] IS[N3] IS[N]

which is the same result. Thus, INS(ISR(N)) = ISR(INS(N)).

Now consider the operation of inverse mix column followed by add key
IMC(Ak,(N)) where the round key K; consists of the nibbles (k, k1 o, ko1, k1.1)-
Then

(9 2><(ko,o ko,1> @ (No Nz)) _ (9 2)<ko,0 @ONy ko1 ® Nz)
29 kiog ki N N 2 9\kig® Ny kg DN;
_ (9(k0,0 @ No) D 2(Ki oD Np) 9(kos @ No) D 2(Ki 1 D Ns))

2(koo D No) DKo D Ny) 2(ko1 D Ny) D UKy 1 @ N3)

_ <(9k0,0 @ 2k19) @ (ONy D 2Ny) (901 @ 2k11) © (ON, D 2N3))
(2koo @ k1 0) D 2Ny @ IN1) (2ko1 ® 9k11) D (2N, @ 9N3)

173

_ <(9k0,0 @ 2kio) (%Ko @ 2k1,1)> <(9No @®2N) OM; @ 2N3))
(2ko @ k1) (2ko; @ ky1) 2Ny D ON;) (2N, @ ON;)

-G kel o v
2 9/ \kip ks 2 9)\N;, N;
All of these steps make use of the properties of finite field arithmetic. The
result is that IMC(Ag,(N)) = IMC(K;) ® IMC(N). Now let us define the inverse
round key for round 1 to be IMC(K;) and the inverse add key operation IAg, to

be the bitwise XOR of the inverse round key with the state vector. Then we have
IMC(Ak,(N)) = IAg (IMC(N)). As a result, we can write the following:

Encryption: Ag, ©SR e NS e Ag o MC 2SR o NS o Ag
Decryption: Ag, oINS oISR o IMC ° Ag, °INS ISR o Ag,
Decryption: Ay, ©ISR oINS © Apyck,) © IMC ISR °INS © Ag,

Both encryption and decryption now follow the same sequence. Note that

this derivation would not work as effectively if round 2 of the encryption algorithm
included the MC function. In that case, we would have

Encryption: Ay oMC °oSR oNS o Ag oMC SR NS © Ag,
Decryption: Ag, oINS ISR oIMC © Ag, ©INS ISR < IMC ° Ag,

There is now no way to interchange pairs of operations in the decryption
algorithm so as to achieve the same structure as the encryption algorithm.

CHAPTER

Brock CipHER OPERATION

6.1 Multiple Encryption and Triple DES

Double DES
Triple DES with Two Keys
Triple DES with Three Keys

6.2 Electronic Code Book

6.3 Cipher Block Chaining Mode

6.4 Cipher Feedback Mode

6.5 Output Feedback Mode

6.6 Counter Mode

6.7 XTS-AES Mode for Block-Oriented Storage Devices

Storage Encryption Requirements
Operation on a Single Block
Operation on a Sector

6.8 Recommended Reading

6.9 Key Terms, Review Questions, and Problems

174

6.1 / MULTIPLE ENCRYPTION AND TRIPLE DES 175

Many savages at the present day regard their names as vital parts of themselves, and
therefore take great pains to conceal their real names, lest these should give to evil-
disposed persons a handle by which to injure their owners.

— The Golden Bough, Sir James George Frazer

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

¢ Analyze the security of multiple encryption schemes.

¢ Explain the meet-in-the-middle attack.

¢ Compare and contrast ECB, CBC, CFB, OFB, and counter modes of operation.
¢ Present an overview of the XTS-AES mode of operation.

This chapter continues our discussion of symmetric ciphers. We begin with the topic of
multiple encryption, looking in particular at the most widely used multiple-encryption
scheme: triple DES.

The chapter next turns to the subject of block cipher modes of operation. We
find that there are a number of different ways to apply a block cipher to plaintext, each
with its own advantages and particular applications.

6.1 MULTIPLE ENCRYPTION AND TRIPLE DES

Given the potential vulnerability of DES to a brute-force attack, there has been
considerable interest in finding an alternative. One approach is to design a com-
pletely new algorithm, of which AES is a prime example. Another alternative,
which would preserve the existing investment in software and equipment, is to use
multiple encryption with DES and multiple keys. We begin by examining the sim-
plest example of this second alternative. We then look at the widely accepted triple
DES (3DES) approach.

Double DES

The simplest form of multiple encryption has two encryption stages and two keys
(Figure 6.1a). Given a plaintext P and two encryption keys K; and K,, ciphertext C
is generated as

C= E(KZ’ E(Kb P))
Decryption requires that the keys be applied in reverse order:

P = D(Kb D(KZ’ C))

176

CHAPTER 6 / BLOCK CIPHER OPERATION

Decryption
(a) Double encryption

Decryption

(b) Triple encryption
Figure 6.1 Multiple Encryption

For DES, this scheme apparently involves a key length of 56 X 2 = 112 bits, result-
ing in a dramatic increase in cryptographic strength. But we need to examine the
algorithm more closely.

REDUCTION TO A SINGLE STAGE Suppose it were true for DES, for all 56-bit key
values, that given any two keys K; and K, it would be possible to find a key Kj
such that

E(K» E(K,. P)) = E(Ks, P) 6.1)

If this were the case, then double encryption, and indeed any number of stages of
multiple encryption with DES, would be useless because the result would be equiv-
alent to a single encryption with a single 56-bit key.

On the face of it, it does not appear that Equation (6.1) is likely to hold.
Consider that encryption with DES is a mapping of 64-bit blocks to 64-bit blocks.
In fact, the mapping can be viewed as a permutation. That is, if we consider all 2
possible input blocks, DES encryption with a specific key will map each block into a
unique 64-bit block. Otherwise, if, say, two given input blocks mapped to the same
output block, then decryption to recover the original plaintext would be impossible.

177

With 2% possible inputs, how many different mappings are there that generate a
permutation of the input blocks? The value is easily seen to be

(264)! — 1()347380000000000000000 ~, (10102")

On the other hand, DES defines one mapping for each different key, for a total
number of mappings:

2% < 107

Therefore, it is reasonable to assume that if DES is used twice with different keys, it
will produce one of the many mappings that are not defined by a single application
of DES. Although there was much supporting evidence for this assumption, it was
not until 1992 that the assumption was proven [CAMP92].

Thus, the use of double DES results in a mapping
that is not equivalent to a single DES encryption. But there is a way to attack this
scheme, one that does not depend on any particular property of DES but that will
work against any block encryption cipher.

The algorithm, known as a meet-in-the-middle attack, was first described in
[DIFF77]. It is based on the observation that, if we have

C= E(KZ’ E(Klv P))
then (see Figure 6.1a)
X = E(Klv P) = D(KZ’ C)

Given a known pair, (P, C), the attack proceeds as follows. First, encrypt P for all
2% possible values of K. Store these results in a table and then sort the table by the
values of X. Next, decrypt C using all 2°° possible values of K,. As each decryption
is produced, check the result against the table for a match. If a match occurs, then
test the two resulting keys against a new known plaintext—ciphertext pair. If the two
keys produce the correct ciphertext, accept them as the correct keys.

For any given plaintext P, there are 2%* possible ciphertext values that could
be produced by double DES. Double DES uses, in effect, a 112-bit key, so that
there are 2''? possible keys. Therefore, on average, for a given plaintext P, the num-
ber of different 112-bit keys that will produce a given ciphertext C is 2112/264 = 2%,
Thus, the foregoing procedure will produce about 2* false alarms on the first (P, C)
pair. A similar argument indicates that with an additional 64 bits of known plaintext
and ciphertext, the false alarm rate is reduced to 2*8~% = 2716 Put another way,
if the meet-in-the-middle attack is performed on two blocks of known plaintext—
ciphertext, the probability that the correct keys are determined is 1 — 2716, The
result is that a known plaintext attack will succeed against double DES, which has a
key size of 112 bits, with an effort on the order of 256 which is not much more than
the 2% required for single DES.

An obvious counter to the meet-in-the-middle attack is to use three stages of encryp-
tion with three different keys. This raises the cost of the meet-in-the-middle attack

178

to 212, which is beyond what is practical now and far into the future. However, it
has the drawback of requiring a key length of 56 X 3 = 168 bits, which may be
somewhat unwieldy.

As an alternative, Tuchman proposed a triple encryption method that uses
only two keys [TUCH?79]. The function follows an encrypt-decrypt-encrypt (EDE)
sequence (Figure 6.1b):

C = E(Kl, D(KZ’ E(Kl? P)))
P = D(Ky, E(Ky, D(K}, €)))

There is no cryptographic significance to the use of decryption for the second
stage. Its only advantage is that it allows users of 3DES to decrypt data encrypted by
users of the older single DES:

C= E(Kl’ D(Kl’ E(Klv P))) = E(Klv P)
P = D(K;, E(K;, D(K;, €))) = D(K;, €)

3DES with two keys is a relatively popular alternative to DES and has been
adopted for use in the key management standards ANSI X9.17 and ISO 8732.!

Currently, there are no practical cryptanalytic attacks on 3DES. Coppersmith
[COPP94] notes that the cost of a brute-force key search on 3DES is on the order of
2112 =~ (5 x 10%) and estimates that the cost of differential cryptanalysis suffers an
exponential growth, compared to single DES, exceeding 10°2.

It is worth looking at several proposed attacks on 3DES that, although not
practical, give a flavor for the types of attacks that have been considered and that
could form the basis for more successful future attacks.

The first serious proposal came from Merkle and Hellman [MERKS81]. Their
plan involves finding plaintext values that produce a first intermediate value of
A = 0 (Figure 6.1b) and then using the meet-in-the-middle attack to determine
the two keys. The level of effort is 2%, but the technique requires 2% chosen plain-
text—ciphertext pairs, which is a number unlikely to be provided by the holder of
the keys.

A known-plaintext attack is outlined in [VANO90]. This method is an im-
provement over the chosen-plaintext approach but requires more effort. The attack
is based on the observation that if we know A and C (Figure 6.1b), then the problem
reduces to that of an attack on double DES. Of course, the attacker does not know
A, even if P and C are known, as long as the two keys are unknown. However, the
attacker can choose a potential value of A and then try to find a known (P, C) pair
that produces A. The attack proceeds as follows.

Obtain n (P, C) pairs. This is the known plaintext. Place these in a table
(Table 1) sorted on the values of P (Figure 6.2b).

' American National Standards Institute (ANSI): Financial Institution Key Management (Wholesale).
From its title, X9.17 appears to be a somewhat obscure standard. Yet a number of techniques specified in
this standard have been adopted for use in other standards and applications, as we shall see throughout
this book.

179

(a) Two-key triple encryption with candidate pair of keys

P, C
B; Key i
(b) Table of n known (c) Table of intermediate
plaintext—ciphertext values and candidate
pairs, sorted on P keys

Known-Plaintext Attack on Triple DES

Pick an arbitrary value a for A, and create a second table (Figure 6.2¢) with en-
tries defined in the following fashion. For each of the 2°° possible keys K| = i,
calculate the plaintext value P, that produces a:

P, = D(i, a)

For each P, that matches an entry in Table 1, create an entry in Table 2 consist-
ing of the K; value and the value of B that is produced for the (P, C) pair from
Table 1, assuming that value of K;:

B =D(, C)
At the end of this step, sort Table 2 on the values of B.
We now have a number of candidate values of K; in Table 2 and are in a posi-

tion to search for a value of K. For each of the 2°° possible keys K, = j, calcu-
late the second intermediate value for our chosen value of a:

B; = D(j, a)

At each step, look up B, in Table 2. If there is a match, then the corresponding
key i from Table 2 plus this value of j are candidate values for the unknown
keys (K, K;). Why? Because we have found a pair of keys (i, j) that produce a
known (P, C) pair (Figure 6.2a).

Test each candidate pair of keys (i, j) on a few other plaintext—ciphertext
pairs. If a pair of keys produces the desired ciphertext, the task is complete. If
no pair succeeds, repeat from step 1 with a new value of a.

180 CHAPTER 6 / BLOCK CIPHER OPERATION

For a given known (P, C), the probability of selecting the unique value of a
that leads to success is 1/2%. Thus, given n (P, C) pairs, the probability of success for
a single selected value of a is 1n/2°*. A basic result from probability theory is that the
expected number of draws required to draw one red ball out of a bin containing n
red balls and N — n green balls is (N + 1)/(n + 1) if the balls are not replaced. So
the expected number of values of a that must be tried is, for large 7,

2 +1 2

n+1 n
Thus, the expected running time of the attack is on the order of
264
(256) 2 — pl20-logn
n

Triple DES with Three Keys

Although the attacks just described appear impractical, anyone using two-key 3DES
may feel some concern. Thus, many researchers now feel that three-key 3DES is
the preferred alternative (e.g., [KALI96a]). Three-key 3DES has an effective key
length of 168 bits and is defined as

C = E(K;, D(K,, E(K}, P)))

Backward compatibility with DES is provided by putting K3 = K, or K; = K.
A number of Internet-based applications have adopted three-key 3DES, in-
cluding PGP and S/MIME, both discussed in Chapter 19.

6.2 ELECTRONIC CODE BOOK

A block cipher takes a fixed-length block of text of length b bits and a key as input
and produces a b-bit block of ciphertext. If the amount of plaintext to be encrypted
is greater than b bits, then the block cipher can still be used by breaking the plain-
text up into b-bit blocks. When multiple blocks of plaintext are encrypted using the
same key, a number of security issues arise. To apply a block cipher in a variety of
applications, five modes of operation have been defined by NIST (SP 800-38A).
In essence, a mode of operation is a technique for enhancing the effect of a cryp-
tographic algorithm or adapting the algorithm for an application, such as applying
a block cipher to a sequence of data blocks or a data stream. The five modes are
intended to cover a wide variety of applications of encryption for which a block
cipher could be used. These modes are intended for use with any symmetric block
cipher, including triple DES and AES. The modes are summarized in Table 6.1 and
described in this and the following sections.

The simplest mode is the electronic codebook (ECB) mode, in which plaintext
is handled one block at a time and each block of plaintext is encrypted using the
same key (Figure 6.3). The term codebook is used because, for a given key, there is
a unique ciphertext for every b-bit block of plaintext. Therefore, we can imagine a
gigantic codebook in which there is an entry for every possible b-bit plaintext pat-
tern showing its corresponding ciphertext.

Block Cipher Modes of Operation

181

Mode

Description

Typical Application

Electronic Codebook (ECB)

Each block of plaintext bits is
encoded independently using the
same key.

Secure transmission of
single values (e.g., an
encryption key)

Cipher Block Chaining (CBC)

The input to the encryption algo-
rithm is the XOR of the next block
of plaintext and the preceding
block of ciphertext.

General-purpose block-
oriented transmission

Authentication

Cipher Feedback (CFB)

Input is processed s bits at a time.
Preceding ciphertext is used as
input to the encryption algorithm
to produce pseudorandom output,
which is XORed with plaintext to
produce next unit of ciphertext.

General-purpose
stream-oriented
transmission

Authentication

Output Feedback (OFB) Similar to CFB, except that the Stream-oriented
input to the encryption algorithm transmission over noisy
is the preceding encryption output, channel (e.g., satellite
and full blocks are used. communication)
Counter (CTR) Each block of plaintext is XORed General-purpose block-

with an encrypted counter. The

oriented transmission

counter is incremented for each e Useful for high-speed

subsequent block. requirements

For a message longer than b bits, the procedure is simply to break the message
into b-bit blocks, padding the last block if necessary. Decryption is performed one
block at a time, always using the same key. In Figure 6.3, the plaintext (padded as
necessary) consists of a sequence of b-bit blocks, Pj, P,, ... , Py; the correspond-
ing sequence of ciphertext blocks is Cy, Cs, ..., Cy. We can define ECB mode as
follows.

ECB C; = E(K, P) j=1,...,N

P, = D(K, C)) j=1,...,N

The ECB method is ideal for a short amount of data, such as an encryption
key. Thus, if you want to transmit a DES or AES key securely, ECB is the appropri-
ate mode to use.

The most significant characteristic of ECB is that if the same b-bit block of
plaintext appears more than once in the message, it always produces the same
ciphertext.

For lengthy messages, the ECB mode may not be secure. If the message is
highly structured, it may be possible for a cryptanalyst to exploit these regulari-
ties. For example, if it is known that the message always starts out with certain
predefined fields, then the cryptanalyst may have a number of known plaintext—
ciphertext pairs to work with. If the message has repetitive elements with a
period of repetition a multiple of b bits, then these elements can be identified by the
analyst. This may help in the analysis or may provide an opportunity for substituting
or rearranging blocks.

182

(a) Encryption
I Cy I I C, I I Cy |
K A/ K 4 K A/

(b) Decryption
Electronic Codebook (ECB) Mode

We now turn to more complex modes of operation. [KNUDOO] lists the fol-

lowing criteria and properties for evaluating and constructing block cipher modes of
operation that are superior to ECB:

Overhead: The additional operations for the encryption and decryption
operation when compared to encrypting and decrypting in the ECB mode.

Error recovery: The property that an error in the ith ciphertext block is inher-
ited by only a few plaintext blocks after which the mode resynchronizes.

Error propagation: The property that an error in the ith ciphertext block is
inherited by the ith and all subsequent plaintext blocks. What is meant here is
a bit error that occurs in the transmission of a ciphertext block, not a compu-
tational error in the encryption of a plaintext block.

Diffusion: How the plaintext statistics are reflected in the ciphertext. Low
entropy plaintext blocks should not be reflected in the ciphertext blocks.
Roughly, low entropy equates to predictability or lack of randomness (see
Appendix F).

Security: Whether or not the ciphertext blocks leak information about the
plaintext blocks.

6.3 / CIPHER BLOCK CHAINING MODE 183

6.3 CIPHER BLOCK CHAINING MODE

To overcome the security deficiencies of ECB, we would like a technique in which
the same plaintext block, if repeated, produces different ciphertext blocks. A
simple way to satisfy this requirement is the cipher block chaining (CBC) mode
(Figure 6.4). In this scheme, the input to the encryption algorithm is the XOR of the
current plaintext block and the preceding ciphertext block; the same key is used for
each block. In effect, we have chained together the processing of the sequence of
plaintext blocks. The input to the encryption function for each plaintext block bears
no fixed relationship to the plaintext block. Therefore, repeating patterns of b bits
are not exposed. As with the ECB mode, the CBC mode requires that the last block
be padded to a full b bits if it is a partial block.

For decryption, each cipher block is passed through the decryption algorithm.
The result is XORed with the preceding ciphertext block to produce the plaintext
block. To see that this works, we can write

C; = E(K, [C;-y @ P))

>

K A K 4 Kk v
|—> Encrypt |—> Encrypt e o o |—> Encrypt
Y. Y Y
| Cy I— C | Cy |
(a) Encryption
| Cy I— C; | Cy |
K A4 K y K y
|—> Decrypt |—> Decrypt e o o |—> Decrypt
v
Y 4 Y
GB N 3 Cn-1

A

y

7 1]

(b) Decryption
Figure 6.4 Cipher Block Chaining (CBC) Mode

184

Then
D(K, C;) = D(K, E(K, [C;-; @ P))
DK, C) =Ci-i @ P
Ci1®DK,C) =Co iy @C1DF =P
To produce the first block of ciphertext, an initialization vector (IV) is XORed
with the first block of plaintext. On decryption, the IV is XORed with the output

of the decryption algorithm to recover the first block of plaintext. The IV is a data
block that is the same size as the cipher block. We can define CBC mode as

C; = EK, [PADIV]) PL=DKK,C)DIV

CBC . .

The IV must be known to both the sender and receiver but be unpredictable
by a third party. In particular, for any given plaintext, it must not be possible to
predict the IV that will be associated to the plaintext in advance of the generation
of the I'V. For maximum security, the IV should be protected against unauthorized
changes. This could be done by sending the I'V using ECB encryption. One reason
for protecting the IV is as follows: If an opponent is able to fool the receiver into
using a different value for IV, then the opponent is able to invert selected bits in the
first block of plaintext. To see this, consider

C, = E(K, [IV® P))
P, = IV@®DK,C)

Now use the notation that X[i] denotes the ith bit of the b-bit quantity X. Then
Pili] = 1V[i] @ D(K, Cy)li]
Then, using the properties of XOR, we can state
Pli]" = IV[i]" © D(K,]

where the prime notation denotes bit complementation. This means that if an oppo-
nent can predictably change bits in IV, the corresponding bits of the received value
of P; can be changed.

For other possible attacks based on prior knowledge of IV, see [VOYDB83].

So long as it is unpredictable, the specific choice of IV is unimportant.
SP800-38A recommends two possible methods: The first method is to apply the
encryption function, under the same key that is used for the encryption of the plain-
text, to a nonce.” The nonce must be a data block that is unique to each execution of
the encryption operation. For example, the nonce may be a counter, a timestamp, or

2NIST SP-800-90 (Recommendation for Random Number Generation Using Deterministic Random Bit

Generators) defines nonce as follows: A time-varying value that has at most a negligible chance of repeat-
ing, for example, a random value that is generated anew for each use, a timestamp, a sequence number,
or some combination of these.

6.4 / CIPHER. FEEDBACK MODE 185

a message number. The second method is to generate a random data block using a
random number generator.

In conclusion, because of the chaining mechanism of CBC, it is an appropriate
mode for encrypting messages of length greater than b bits.

In addition to its use to achieve confidentiality, the CBC mode can be used for
authentication. This use is described in Chapter 12.

6.4 CIPHER FEEDBACK MODE

For AES, DES, or any block cipher, encryption is performed on a block of b bits. In
the case of DES, b = 64 and in the case of AES, b = 128. However, it is possible
to convert a block cipher into a stream cipher, using one of the three modes to be
discussed in this and the next two sections: cipher feedback (CFB) mode, output
feedback (OFB) mode, and counter (CTR) mode. A stream cipher eliminates the
need to pad a message to be an integral number of blocks. It also can operate in
real time. Thus, if a character stream is being transmitted, each character can be
encrypted and transmitted immediately using a character-oriented stream cipher.

One desirable property of a stream cipher is that the ciphertext be of the same
length as the plaintext. Thus, if 8-bit characters are being transmitted, each charac-
ter should be encrypted to produce a ciphertext output of 8 bits. If more than § bits
are produced, transmission capacity is wasted.

Figure 6.5 depicts the CFB scheme. In the figure, it is assumed that the unit of
transmission is s bits; a common value is s = 8. As with CBC, the units of plaintext
are chained together, so that the ciphertext of any plaintext unit is a function of all
the preceding plaintext. In this case, rather than blocks of b bits, the plaintext is
divided into segments of s bits.

First, consider encryption. The input to the encryption function is a b-bit shift
register that is initially set to some initialization vector (IV). The leftmost (most
significant) s bits of the output of the encryption function are XORed with the
first segment of plaintext P; to produce the first unit of ciphertext Cy, which is then
transmitted. In addition, the contents of the shift register are shifted left by s bits,
and C is placed in the rightmost (least significant) s bits of the shift register. This
process continues until all plaintext units have been encrypted.

For decryption, the same scheme is used, except that the received ciphertext
unit is XORed with the output of the encryption function to produce the plaintext
unit. Note that it is the encryption function that is used, not the decryption func-
tion. This is easily explained. Let MSB,(X) be defined as the most significant s bits
of X. Then

C, = P ® MSB{E(K, 1V)]
Therefore, by rearranging terms:
P = C; @ MSB[E(K, 1V)]

The same reasoning holds for subsequent steps in the process.

186 CHAPTER 6 / BLOCK CIPHER OPERATION

\4

i

[

Encrypt

Select| Discard
s bits| b —s bits

<+ Y

Shift register
b — s bits |s bits

K

L

Encrypt

Select| Discard
s bits | b — s bits

s bits s bits

V} \ 79

Y y
s bits s bits

(a) Encryption
* Shift register
v] | b5 bits sbns|
Encrypt Encrypt

Select| Discard
s bits | b —s bits

Select Dlscard
s bits | b —s bits

Cnoi
D Y
Shift register
b — s bits |s bits
K

Encrypt

Select| Discard
s bits| b —s bits

s bits

Cnoi
D Y
Shift register
b — s bits |s bits
K

Encrypt

Select| Discard
s bits| b —s bits

) 4 L4 ¥
P—-] [C:]
v s bits s bits s bits
Pl PZ PN
s bits s bits s bits
(b) Decryption
Figure 6.5 s-bit Cipher Feedback (CFB) Mode
We can define CFB mode as follows.
L =1V L =1V
CFB I = LSBy (-)| Cj-1 j=2,...,N I = LSBy(;-)||Cj-1 j=2,...,N
0; = E(K, I) j=1,...,N = E(K, I) j=1,...,N
C; = P,® MSB((0)) j=1,...,N P. = C; ® MSB,(0)) j=1,...,N

Although CFB can be viewed as a stream cipher, it does not conform to the
typical construction of a stream cipher. In a typical stream cipher, the cipher takes

6.5 / OUTPUT FEEDBACK MODE 187

as input some initial value and a key and generates a stream of bits, which is then
XORed with the plaintext bits (see Figure 3.1). In the case of CFB, the stream of
bits that is XORed with the plaintext also depends on the plaintext.

In CFB encryption, like CBC encryption, the input block to each forward
cipher function (except the first) depends on the result of the previous forward
cipher function; therefore, multiple forward cipher operations cannot be performed
in parallel. In CFB decryption, the required forward cipher operations can be per-
formed in parallel if the input blocks are first constructed (in series) from the I'V and
the ciphertext.

6.5 OUTPUT FEEDBACK MODE

The output feedback (OFB) mode is similar in structure to that of CFB. For OFB,
the output of the encryption function is fed back to become the input for encrypting
the next block of plaintext (Figure 6.6). In CFB, the output of the XOR unit is fed
back to become input for encrypting the next block. The other difference is that the
OFB mode operates on full blocks of plaintext and ciphertext, whereas CFB oper-
ates on an s-bit subset. OFB encryption can be expressed as

C=F® E(K, Ojfl)
where
0j-1 = E(K, O;-)

Some thought should convince you that we can rewrite the encryption expres-
sion as:

C; = P®EK,[Ci-1 ® F-1])
By rearranging terms, we can demonstrate that decryption works.
P = C®EK,[Ci-1 @ P-1])

We can define OFB mode as follows.

I, = Nonce I, = Nonce

I =0, j=2,...,N =04 j=2,...,N
OFB O,=EKK,I) j=1...,N O,=EKK,I) j=1,... ,N

¢=P®dO;, j=1,...,N—-1 PpP=C®0; j=1... ,N—-1

Cy = Py @ MSB,(Oy) Py = Cy @ MSB,(Oy)

Let the size of a block be b. If the last block of plaintext contains u bits (indi-
cated by *), with u < b, the most significant u bits of the last output block Oy are
used for the XOR operation; the remaining b — u bits of the last output block are
discarded.

As with CBC and CFB, the OFB mode requires an initialization vector. In
the case of OFB, the IV must be a nonce; that is, the IV must be unique to each
execution of the encryption operation. The reason for this is that the sequence of

vB vB v9
y y \
[& 1 [& 1] [& 1]
(a) Encryption

A y \
(b) Decryption

Output Feedback (OFB) Mode

encryption output blocks, O;, depends only on the key and the IV and does not de-
pend on the plaintext. Therefore, for a given key and IV, the stream of output bits
used to XOR with the stream of plaintext bits is fixed. If two different messages had
an identical block of plaintext in the identical position, then an attacker would be
able to determine that portion of the O; stream.

One advantage of the OFB method is that bit errors in transmission do not
propagate. For example, if a bit error occurs in Cy, only the recovered value of P, is
affected; subsequent plaintext units are not corrupted. With CFB, C; also serves as
input to the shift register and therefore causes additional corruption downstream.

The disadvantage of OFB is that it is more vulnerable to a message stream
modification attack than is CFB. Consider that complementing a bit in the cipher-
text complements the corresponding bit in the recovered plaintext. Thus, controlled

6.6 / COUNTER MODE 189

changes to the recovered plaintext can be made. This may make it possible for an
opponent, by making the necessary changes to the checksum portion of the message
as well as to the data portion, to alter the ciphertext in such a way that it is not de-
tected by an error-correcting code. For a further discussion, see [VOYD83].

OFB has the structure of a typical stream cipher, because the cipher gener-
ates a stream of bits as a function of an initial value and a key, and that stream of
bits is XORed with the plaintext bits (see Figure 3.1). The generated stream that is
XORed with the plaintext is itself independent of the plaintext; this is highlighted
by dashed boxes in Figure 6.6. One distinction from the stream ciphers we discuss
in Chapter 7 is that OFB encrypts plaintext a full block at a time, where typically a
block is 64 or 128 bits. Many stream ciphers encrypt one byte at a time.

6.6 COUNTER MODE

Although interest in the counter (CTR) mode has increased recently with applica-
tions to ATM (asynchronous transfer mode) network security and IP sec (IP secu-
rity), this mode was proposed early on (e.g., [DIFF79]).

Figure 6.7 depicts the CTR mode. A counter equal to the plaintext block
size is used. The only requirement stated in SP 800-38A is that the counter value
must be different for each plaintext block that is encrypted. Typically, the counter
is initialized to some value and then incremented by 1 for each subsequent block
(modulo 2°, where b is the block size). For encryption, the counter is encrypted and
then XORed with the plaintext block to produce the ciphertext block; there is no
chaining. For decryption, the same sequence of counter values is used, with each en-
crypted counter XORed with a ciphertext block to recover the corresponding plain-
text block. Thus, the initial counter value must be made available for decryption.
Given a sequence of counters 73, T, . . . , Ty, we can define CTR mode as follows.

C;=P®EK,T) j=1,....,N-1| P=CO®EKT) j=1...,N—1

CTR 5 . « ¥
Cy = Py ® MSB,[E(K. Ty)] Pl = C ® MSB,[E(K, Ty)]

For the last plaintext block, which may be a partial block of u bits, the most
significant u bits of the last output block are used for the XOR operation; the re-
maining b — u bits are discarded. Unlike the ECB, CBC, and CFB modes, we do
not need to use padding because of the structure of the CTR mode.

As with the OFB mode, the initial counter value must be a nonce; that is, T;
must be different for all of the messages encrypted using the same key. Further,
all T; values across all messages must be unique. If, contrary to this requirement, a
counter value is used multiple times, then the confidentiality of all of the plaintext
blocks corresponding to that counter value may be compromised. In particular, if
any plaintext block that is encrypted using a given counter value is known, then
the output of the encryption function can be determined easily from the associated
ciphertext block. This output allows any other plaintext blocks that are encrypted
using the same counter value to be easily recovered from their associated cipher-
text blocks.

(b) Decryption

Counter (CTR) Mode

One way to ensure the uniqueness of counter values is to continue to incre-
ment the counter value by 1 across messages. That is, the first counter value of the
each message is one more than the last counter value of the preceding message.

[LIPMOO] lists the following advantages of CTR mode.

Hardware efficiency: Unlike the three chaining modes, encryption (or decryp-
tion) in CTR mode can be done in parallel on multiple blocks of plaintext or
ciphertext. For the chaining modes, the algorithm must complete the computa-
tion on one block before beginning on the next block. This limits the maximum
throughput of the algorithm to the reciprocal of the time for one execution of
block encryption or decryption. In CTR mode, the throughput is only limited
by the amount of parallelism that is achieved.

6.7 / XTS-AES MODE FOR BLOCK-ORIENTED STORAGE DEVICES 191

* Software efficiency: Similarly, because of the opportunities for parallel execu-
tion in CTR mode, processors that support parallel features, such as aggres-
sive pipelining, multiple instruction dispatch per clock cycle, a large number of
registers, and SIMD instructions, can be effectively utilized.

* Preprocessing: The execution of the underlying encryption algorithm does
not depend on input of the plaintext or ciphertext. Therefore, if sufficient
memory is available and security is maintained, preprocessing can be used to
prepare the output of the encryption boxes that feed into the XOR functions,
as in Figure 6.7. When the plaintext or ciphertext input is presented, then
the only computation is a series of XORs. Such a strategy greatly enhances
throughput.

* Random access: The ith block of plaintext or ciphertext can be processed in
random-access fashion. With the chaining modes, block C; cannot be com-
puted until the i — 1 prior block are computed. There may be applications in
which a ciphertext is stored and it is desired to decrypt just one block; for such
applications, the random access feature is attractive.

* Provable security: It can be shown that CTR is at least as secure as the other
modes discussed in this section.

e Simplicity: Unlike ECB and CBC modes, CTR mode requires only the im-
plementation of the encryption algorithm and not the decryption algorithm.
This matters most when the decryption algorithm differs substantially from
the encryption algorithm, as it does for AES. In addition, the decryption key
scheduling need not be implemented.

Note that, with the exception of ECB, all of the NIST-approved block
cipher modes of operation involve feedback. This is clearly seen in Figure 6.8. To
highlight the feedback mechanism, it is useful to think of the encryption function
as taking input from a input register whose length equals the encryption block
length and with output stored in an output register. The input register is updated
one block at a time by the feedback mechanism. After each update, the encryp-
tion algorithm is executed, producing a result in the output register. Meanwhile,
a block of plaintext is accessed. Note that both OFB and CTR produce output
that is independent of both the plaintext and the ciphertext. Thus, they are natu-
ral candidates for stream ciphers that encrypt plaintext by XOR one full block
at a time.

6.7 XTS-AES MODE FOR BLOCK-ORIENTED
STORAGE DEVICES
In 2010, NIST approved an additional block cipher mode of operation, XTS-AES.
This mode is also an IEEE standard, IEEE Std 1619-2007, which was developed
by the IEEE Security in Storage Working Group (P1619). The standard describes
a method of encryption for data stored in sector-based devices where the threat

model includes possible access to stored data by the adversary. The standard has
received widespread industry support.

192

|Plaintext blockl
A
»D Input register
\ Key

| Input register | Encrypt
Key
Encrypt <—| |Output registerl

v v
|Output registerl E Plaintext block

\ 4 \
Ciphertext Ciphertext

(a) Cipher block chaining (CBC) mode (b) Cipher feedback (CFB) mode

Input register
Key

Encrypt Encrypt

|Output registerl |Output registerl

E Plaintext block E Plaintext block

\ 4
Ciphertext Ciphertext

Input register

1
[
[
[
[
[
[
[
[
[

Key 1
[
[
[
[
[
[
[
[
[
[

(¢) Output feedback (OFB) mode (d) Counter (CTR) mode
Feedback Characteristic of Modes of Operation

The XTS-AES mode is based on the concept of a tweakable block cipher, intro-
duced in [LISK02]. The form of this concept used in XTS-AES was first described
in [ROGA04].

Before examining XTS-AES, let us consider the general structure of a tweak-
able block cipher. A tweakable block cipher is one that has three inputs: a plaintext P,
a symmetric key K, and a tweak T; and produces a ciphertext output C. We can
write this as C = E(K, T, P). The tweak need not be kept secret. Whereas the pur-
pose of the key is to provide security, the purpose of the tweak is to provide vari-
ability. That is, the use of different tweaks with the same plaintext and same key

193

UE e r 1 ¢]
Hash HT; Hash
function function
K K

Encrypt <J Decrypt <J

(a) Encryption (b) Decryption
Tweakable Block Cipher

produces different outputs. The basic structure of several tweakable clock ciphers
that have been implemented is shown in Figure 6.9. Encryption can be expressed as:

C=H(T)®EMKHT) ®P)

where H is a hash function. For decryption, the same structure is used with the
plaintext as input and decryption as the function instead of encryption. To see that
this works, we can write

H(T)® C = E(K,H(T)® P)
DIK,.HT)®C]=H(T)® P
HT)® DK, H(T)®C) =P

It is now easy to construct a block cipher mode of operation by using a differ-
ent tweak value on each block. In essence, the ECB mode is used but for each block
the tweak is changed. This overcomes the principal security weakness of ECB,
which is that two encryptions of the same block yield the same ciphertext.

The requirements for encrypting stored data, also referred to as “data at rest” dif-
fer somewhat from those for transmitted data. The P1619 standard was designed to
have the following characteristics:

The ciphertext is freely available for an attacker. Among the circumstances
that lead to this situation:

A group of users has authorized access to a database. Some of the records
in the database are encrypted so that only specific users can successfully
read/write them. Other users can retrieve an encrypted record but are un-
able to read it without the key.

An unauthorized user manages to gain access to encrypted records.

A data disk or laptop is stolen, giving the adversary access to the encrypted
data.

194

The data layout is not changed on the storage medium and in transit. The en-
crypted data must be the same size as the plaintext data.

Data are accessed in fixed sized blocks, independently from each other. That is,
an authorized user may access one or more blocks in any order.

Encryption is performed in 16-byte blocks, independently from other blocks
(except the last two plaintext blocks of a sector, if its size is not a multiple of
16 bytes).

There are no other metadata used, except the location of the data blocks
within the whole data set.

The same plaintext is encrypted to different ciphertexts at different locations,
but always to the same ciphertext when written to the same location again.

A standard conformant device can be constructed for decryption of data en-
crypted by another standard conformant device.

The P1619 group considered some of the existing modes of operation for use with
stored data. For CTR mode, an adversary with write access to the encrypted media can
flip any bit of the plaintext simply by flipping the corresponding ciphertext bit.

Next, consider requirement 6 and the use of CBC. To enforce the requirement
that the same plaintext encrypt to different ciphertext in different locations, the IV
could be derived from the sector number. Each sector contains multiple blocks. An
adversary with read/write access to the encrypted disk can copy a ciphertext sec-
tor from one position to another, and an application reading the sector off the new
location will still get the same plaintext sector (except perhaps the first 128 bits).
For example, this means that an adversary that is allowed to read a sector from the
second position but not the first can find the content of the sector in the first posi-
tion by manipulating the ciphertext. Another weakness is that an adversary can flip
any bit of the plaintext by flipping the corresponding ciphertext bit of the previous
block, with the side-effect of “randomizing” the previous block.

Figure 6.10 shows the encryption and decryption of a single block. The operation in-
volves two instances of the AES algorithm with two keys. The following parameters
are associated with the algorithm.

Key The 256 or 512 bit XTS-AES key; this is parsed as a concatenation
of two fields of equal size called Key; and Key,, such that
Key = Key || Key,.

P The jth block of plaintext. All blocks except possibly the final block
have a length of 128 bits. A plaintext data unit, typically a disk sector,
consists of a sequence of plaintext blocks Py, P, ..., P,,.

C; The jth block of ciphertext. All blocks except possibly the final block
have a length of 128 bits.

j The sequential number of the 128-bit block inside the data unit.

i The value of the 128-bit tweak. Each data unit (sector) is assigned

a tweak value that is a nonnegative integer. The tweak values are
assigned consecutively, starting from an arbitrary nonnegative integer.

195

o A primitive element of GF(2!?%) that corresponds to polynomial x

(i-e., 0000. . .010,).
a multiplied by itself j times, in GF(2!'%®).
Bitwise XOR.

X @

Modular multiplication of two polynomials with binary coefficients

modulo x'?® + x” + x?> + x + 1. Thus, this is multiplication in

GF(2!%).

In essence, the parameter j functions much like the counter in CTR mode. It
assures that if the same plaintext block appears at two different positions within a
data unit, it will encrypt to two different ciphertext blocks. The parameter i func-
tions much like a nonce at the data unit level. It assures that, if the same plaintext

Key, \ 4
Y
| AES T R
Encrypt YV
v PP
AES
Encrypt
y CC
»N
YV

Key, \
L4
| AES T = C)
Encrypt i
v cc
AES
Decrypt
y PP
» D
WV
\ 4

(b) Decryption

XTS-AES Operation on Single Block

Key,

Key,

196

block appears at the same position in two different data units, it will encrypt to two
different ciphertext blocks. More generally, it assures that the same plaintext data
unit will encrypt to two different ciphertext data units for two different data unit
positions.

The encryption and decryption of a single block can be described as

T =E(K,i)®a T =E(K,i)®a
XTS-AESblock | PP=P®T CC=CO®T
operation CC = E(K;, PP) PP = D(K;, CC)
C=CCO®T P=PP®T

To see that decryption recovers the plaintext, let us expand the last line of both en-
cryption and decryption. For encryption, we have

C=CCO®T=EK,PP)®T=EK,PERT)DT
and for decryption, we have

P=PP®T=DK,COO®@T=DK,COHTYDT
Now, we substitute for C:

P=DK,COT)DT
= DK, [E(Kj, PO@T)DT|DT)DT
= DK, EK,P@®T)®T
=POAT)®T=P

The plaintext of a sector or data unit is organized into blocks of 128 bits. Blocks are
labeled Py, Py, . . ., P,,. The last block my be null or may contain from 1 to 127 bits.
In other words, the input to the XTS-AES algorithm consists of m 128-bit blocks
and possibly a final partial block.

For encryption and decryption, each block is treated independently and
encrypted/decrypted as shown in Figure 6.10. The only exception occurs when
the last block has less than 128 bits. In that case, the last two blocks are en-
crypted/decrypted using a ciphertext-stealing technique instead of padding.
Figure 6.11 shows the scheme. P,,_; is the last full plaintext block, and P,, is the
final plaintext block, which contains s bits with 1 < s =< 127. C,,_; is the last full
ciphertext block, and C,, is the final ciphertext block, which contains s bits. This
technique is commonly called ciphertext stealing because the processing of the
last block “steals” a temporary ciphertext of the penultimate block to complete
the cipher block.

Let us label the block encryption and decryption algorithms of Figure 6.10 as

Block encryption: XTS-AES-blockEnc(K, P, i, f)
Block decryption: XTS-AES-blockDec(K, C;, i, f)

6.7 / XTS-AES MODE FOR BLOCK-ORIENTED STORAGE DEVICES

L% L~
i, 0 i1
Key v Key v
XTS-AES XTS-AES
block block o o o
encryption encryption
Y Y
G L& |
(a) Encryption
L& L& |
i,0 i1
Key l v Key l v
| »| XTS-AES | »| XTS-AES
block block e o o
decryption decryption
Y Y
Py L~ |
(b) Decryption

Figure 6.11

XTS-AES Mode

197
71| [mle
YY
i, m-1 i,m
Key v Key l v
I_> XTS-AES I_> XTS-AES
block block
encryption encryption
v v
Gl oV [oo
Cm—l Cm
[Coa | [c.] cp
XX
i,m i,m-1
\4 Key \4
I_> XTS-AES I_> XTS-AES
block block
decryption decryption
v v
2% I S
P m-1 P m

Then, XTS-AES mode is defined as follows:

final block

XTS-AES mode with null

C; = XTS-AES-blockEnc(K, P,i,j) j=0,...,m —1

P, = XTS-AES-blockEnc(K, C;,i,j) j=0,...,m — 1

XTS-AES mode with final
block containing s bits

Pl CP

C; = XTS-AES-blockEnc(K, P, i,j)j=0,...,m — 2
XX = XTS-AES-blockEnc(K, P,,_1,i,m — 1)
CP = LSB p5_(XX)
YY =
C,,—1 = XTS-AES-blockEnc(K, YY, i, m)
C,, = MSB,(XX)

C,|lICP

P, = XTS-AES-blockDec(K, C;,i,j)j = 0,...,m — 2
YY = XTS-AES-blockDec(K, C,,_y,i,m — 1)
CP = LSBy- (YY)
XX =
P,_, = XTS-AES-blockDec(K, XX, i, m)
P, = MSB,(YY)

198 CHAPTER 6 / BLOCK CIPHER OPERATION

As can be seen, XTS-AES mode, like CTR mode, is suitable for parallel oper-

ation. Because there is no chaining, multiple blocks can be encrypted or decrypted
simultaneously. Unlike CTR mode, XTS-AES mode includes a nonce (the param-
eter i) as well as a counter (parameter j).

6.8 RECOMMENDED READING

[BALLI12] provides a clear description of XTS-AES and examines its security properties.

BALLI12 Ball,M,, et al. “The XTS-AES Disk Encryption Algorithm and the Security of

Ciphertext Stealing.” Cryptologia, January 2012.

6.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
block cipher modes of ciphertext stealing output feedback mode
operation counter mode (CTR) (OFB)
cipher block chaining mode electronic codebook mode Triple DES (3DES)
(CBC) (ECB) tweakable block cipher
cipher feedback mode meet-in-the-middle attack XTS-AES mode
(CFB) nonce

Review Questions

6.1
6.2
6.3
6.4
6.5

What is triple encryption?

What is a meet-in-the-middle attack?

How many keys are used in triple encryption?

Why is the middle portion of 3DES a decryption rather than an encryption?

Why do some block cipher modes of operation only use encryption while others use
both encryption and decryption?

Problems

6.1

You want to build a hardware device to do block encryption in the cipher block chain-
ing (CBC) mode using an algorithm stronger than DES. 3DES is a good candidate.
Figure 6.12 shows two possibilities, both of which follow from the definition of CBC.
Which of the two would you choose:

a. For security?

b. For performance?

Can you suggest a security improvement to either option in Figure 6.12, using only
three DES chips and some number of XOR functions? Assume you are still limited to
two keys.

199

]
o

G Ay

) T
K, K, —>EDE| K, {E:'

C Ay

Bn*]

(a) One-loop CBC

(b) Three-loop CBC
Use of Triple DES in CBC Mode

The Merkle-Hellman attack on 3DES begins by assuming a value of A =0
(Figure 6.1b). Then, for each of the 25 possible values of Kj, the plaintext P that
produces A = 0 is determined. Describe the rest of the algorithm.

With the ECB mode, if there is an error in a block of the transmitted ciphertext, only
the corresponding plaintext block is affected. However, in the CBC mode, this error
propagates. For example, an error in the transmitted C; (Figure 6.4) obviously cor-
rupts P, and P,.

Are any blocks beyond P, affected?

Suppose that there is a bit error in the source version of P;. Through how many

ciphertext blocks is this error propagated? What is the effect at the receiver?
Is it possible to perform encryption operations in parallel on multiple blocks of plain-
text in CBC mode? How about decryption?
CBC-Pad is a block cipher mode of operation used in the RC5 block cipher, but it
could be used in any block cipher. CBC-Pad handles plaintext of any length. The
ciphertext is longer then the plaintext by at most the size of a single block. Padding is
used to assure that the plaintext input is a multiple of the block length. It is assumed
that the original plaintext is an integer number of bytes. This plaintext is padded at
the end by from 1 to bb bytes, where bb equals the block size in bytes. The pad bytes
are all the same and set to a byte that represents the number of bytes of padding. For
example, if there are 8 bytes of padding, each byte has the bit pattern 00001000. Why
not allow zero bytes of padding? That is, if the original plaintext is an integer multiple
of the block size, why not refrain from padding?

200 CHAPTER 6 / BLOCK CIPHER OPERATION

6.7 For the ECB, CBC, and CFB modes, the plaintext must be a sequence of one or more
complete data blocks (or, for CFB mode, data segments). In other words, for these
three modes, the total number of bits in the plaintext must be a positive multiple of
the block (or segment) size. One common method of padding, if needed, consists of a
1 bit followed by as few zero bits, possibly none, as are necessary to complete the final
block. It is considered good practice for the sender to pad every message, including
messages in which the final message block is already complete. What is the motiva-
tion for including a padding block when padding is not needed?

6.8 If a bit error occurs in the transmission of a ciphertext character in 8-bit CFB mode,
how far does the error propagate?

6.9 In discussing OFB, it was mentioned that if it was known that two different messages
had an identical block of plaintext in the identical position, it is possible to recover
the corresponding O; block. Show the calculation.

6.10 In discussing the CTR mode, it was mentioned that if any plaintext block that is en-
crypted using a given counter value is known, then the output of the encryption function
can be determined easily from the associated ciphertext block. Show the calculation.

6.11 Padding may not always be appropriate. For example, one might wish to store the en-
crypted data in the same memory buffer that originally contained the plaintext. In that
case, the ciphertext must be the same length as the original plaintext. We saw the use
of ciphertext stealing in the case of XTS-AES to deal with partial blocks. Figure 6.13a
shows the use of ciphertext stealing to modify CBC mode, called CBC-CTS.

v P, Py, N— 00...0

[]
D) Ca () ® o
K —— Encrypt L K — EncryptI K —| Encrypt K Encrypt
—

C Cn—2 X Cn-1

(a) Ciphertext stealing mode

P Py Py Py
v (bbbits) (bD bits) (bb bits) (J bits)

T N-3 + n ©)

select
K = Encrypt ** K—Encrypt K = Encrypt K = Encrypt le.ftbnilt(;st
—

G Cn- Cy-1 Cy

(bb bits) (bb bits) (b bits) (j bits)
(b) Alternative method

Figure 6.13 Block Cipher Modes for Plaintext not a Multiple of Block Size

201

Explain how it works.
Describe how to decrypt C,,_; and C,,.
Figure 6.13b shows an alternative to CBC-CTS for producing ciphertext of equal
length to the plaintext when the plaintext is not an integer multiple of the block size.
Explain the algorithm.
Explain why CBC-CTS is preferable to this approach illustrated in Figure 6.13b.

Draw a figure similar to those of Figure 6.8 for XTS-AES mode.

Create software that can encrypt and decrypt in cipher block chaining mode using
one of the following ciphers: affine modulo 256, Hill modulo 256, S-DES, DES.

Test data for S-DES using a binary initialization vector of 1010 1010. A binary plain-
text of 0000 0001 0010 0011 encrypted with a binary key of 01111 11101 should give
a binary plaintext of 1111 0100 0000 1011. Decryption should work correspondingly.
Create software that can encrypt and decrypt in 4-bit cipher feedback mode using one
of the following ciphers: additive modulo 256, affine modulo 256, S-DES;

or
8-bit cipher feedback mode using one of the following ciphers: 2 X 2 Hill modulo 256.
Test data for S-DES using a binary initialization vector of 1010 1011. A binary plain-
text of 0001 0010 0011 0100 encrypted with a binary key of 01111 11101 should give
a binary plaintext of 1110 1100 1111 1010. Decryption should work correspondingly.
Create software that can encrypt and decrypt in counter mode using one of the fol-
lowing ciphers: affine modulo 256, Hill modulo 256, S-DES.
Test data for S-DES using a counter starting at 0000 0000. A binary plaintext of
0000 0001 0000 0010 0000 0100 encrypted with a binary key of 01111 11101 should
give a binary plaintext of 0011 1000 0100 1111 0011 0010. Decryption should work
correspondingly.
Implement a differential cryptanalysis attack on 3-round S-DES.

PSEUDORANDOM NUMBER
(GENERATION AND STREAM CIPHERS

202

71

7.2

7.3

74
S

7.6

7.7
7.8

Principles of Pseudorandom Number Generation

The Use of Random Numbers
TRNGs, PRNGs, and PRFs
PRNG Requirements
Algorithm Design

Pseudorandom Number Generators

Linear Congruential Generators
Blum Blum Shub Generator

Pseudorandom Number Generation Using a Block Cipher

PRNG Using Block Cipher Modes of Operation
ANSI X9.17 PRNG
NIST CTR_DRBG

Stream Ciphers
RC4

Initialization of S
Stream Generation
Strength of RC4

True Random Number Generators

Entropy Sources

Comparison of PRNGs and TRNGs
Skew

Intel Digital Random Number Generator
DRNG Hardware Architecture

DRNG Logical Structure

Recommended Reading

Key Terms, Review Questions, and Problems

203

The comparatively late rise of the theory of probability shows how hard it is to grasp,
and the many paradoxes show clearly that we, as humans, lack a well grounded
intuition in this matter.

In probability theory there is a great deal of art in setting up the model, in solving
the problem, and in applying the results back to the real world actions that will follow.

— The Art of Probability, Richard Hamming

LEARNING OBJECTIVES

After studying this chapter, you should be able to:
Explain the concepts of randomness and unpredictability with respect to
random numbers.

Understand the differences among true random number generators,
pseudorandom number generators, and pseudorandom functions.

Present an overview of requirements for pseudorandom number generators.

Explain how a block cipher can be used to construct a pseudorandom
number generator.

Present an overview of stream ciphers and RC4.
Explain the significance of skew.

An important cryptographic function is cryptographically strong pseudorandom num-
ber generation. Pseudorandom number generators (PRNGs) are used in a variety
of cryptographic and security applications. We begin the chapter with a look at the
basic principles of PRNGs and contrast these with true random number generators
(TRNGs).! Next, we look at some common PRNGs, including PRNGs based on the
use of a symmetric block cipher.

The chapter then moves on to the topic of symmetric stream ciphers, which are
based on the use of a PRNG. The chapter next examines the most important stream
cipher, RC4. Finally, we examine TRNGs.

Random numbers play an important role in the use of encryption for various net-
work security applications. In this section, we provide a brief overview of the use
of random numbers in cryptography and network security and then focus on the
principles of pseudorandom number generation.

A note on terminology. Some standards documents, notably NIST and ANSI, refer to a TRNG as a
nondeterministic random bit generator (NRBG) and a PRNG as a deterministic random bit generator
(DRBG).

204

A number of network security algorithms and protocols based on cryptography
make use of random binary numbers. For example,

Key distribution and reciprocal (mutual) authentication schemes, such as
those discussed in Chapters 14 and 15. In such schemes, two communicating
parties cooperate by exchanging messages to distribute keys and/or authenti-
cate each other. In many cases, nonces are used for handshaking to prevent
replay attacks. The use of random numbers for the nonces frustrates an oppo-
nent’s efforts to determine or guess the nonce, in order to repeat an obsolete
transaction.

Session key generation. We will see a number of protocols in this book where
a secret key for symmetric encryption is generated for use for a particular
transaction (or session) and is valid for a short period of time. This key is
generally called a session key.

Generation of keys for the RSA public-key encryption algorithm (described
in Chapter 9).

Generation of a bit stream for symmetric stream encryption (described in this
chapter).

These applications give rise to two distinct and not necessarily compatible
requirements for a sequence of random numbers: randomness and unpredictability.

Traditionally, the concern in the generation of a sequence of alleg-
edly random numbers has been that the sequence of numbers be random in some
well-defined statistical sense. The following two criteria are used to validate that a
sequence of numbers is random:

Uniform distribution: The distribution of bits in the sequence should be uni-
form; that is, the frequency of occurrence of ones and zeros should be approxi-
mately equal.

Independence: No one subsequence in the sequence can be inferred from the
others.

Although there are well-defined tests for determining that a sequence of bits
matches a particular distribution, such as the uniform distribution, there is no such
test to “prove” independence. Rather, a number of tests can be applied to demon-
strate if a sequence does not exhibit independence. The general strategy is to apply
a number of such tests until the confidence that independence exists is sufficiently
strong. That is, if each of a number of tests fails to show that a sequence of bits is
not independent, then we can have a high level of confidence that the sequence is in
fact independent.

In the context of our discussion, the use of a sequence of numbers that appear
statistically random often occurs in the design of algorithms related to cryptography.
For example, a fundamental requirement of the RSA public-key encryption scheme
discussed in Chapter 9 is the ability to generate prime numbers. In general, it is

205

difficult to determine if a given large number N is prime. A brute-force approach
would be to divide N by every odd integer less thanVVN. If N is on the order, say,
of 10", which is a not uncommon occurrence in public-key cryptography, such a
brute-force approach is beyond the reach of human analysts and their computers.
However, a number of effective algorithms exist that test the primality of a num-
ber by using a sequence of randomly chosen integers as input to relatively simple
computations. If the sequence is sufficiently long (but far, far less than \/10!*°), the
primality of a number can be determined with near certainty. This type of approach,
known as randomization, crops up frequently in the design of algorithms. In es-
sence, if a problem is too hard or time-consuming to solve exactly, a simpler, shorter
approach based on randomization is used to provide an answer with any desired
level of confidence.

In applications such as reciprocal authentication, session key
generation, and stream ciphers, the requirement is not just that the sequence of
numbers be statistically random but that the successive members of the sequence
are unpredictable. With “true” random sequences, each number is statistically inde-
pendent of other numbers in the sequence and therefore unpredictable. Although
true random numbers are used in some applications, they have their limitations,
such as inefficiency, as is discussed shortly. Thus, it is more common to implement
algorithms that generate sequences of numbers that appear to be random. In this
latter case, care must be taken that an opponent not be able to predict future ele-
ments of the sequence on the basis of earlier elements.

Cryptographic applications typically make use of algorithmic techniques for ran-
dom number generation. These algorithms are deterministic and therefore produce
sequences of numbers that are not statistically random. However, if the algorithm is
good, the resulting sequences will pass many tests of randomness. Such numbers are
referred to as pseudorandom numbers.

You may be somewhat uneasy about the concept of using numbers gener-
ated by a deterministic algorithm as if they were random numbers. Despite what
might be called philosophical objections to such a practice, it generally works.
That is, under most circumstances, pseudorandom numbers will perform as well
as if they were random for a given use. The phrase “as well as” is unfortunately
subjective, but the use of pseudorandom numbers is widely accepted. The same
principle applies in statistical applications, in which a statistician takes a sample of
a population and assumes that the results will be approximately the same as if the
whole population were measured.

Figure 7.1 contrasts a true random number generator (TRNG) with two
forms of pseudorandom number generators. A TRNG takes as input a source
that is effectively random; the source is often referred to as an entropy source.
We discuss such sources in Section 7.6. In essence, the entropy source is drawn
from the physical environment of the computer and could include things such
as keystroke timing patterns, disk electrical activity, mouse movements, and

206

Source of Context-
true specific
randomness Seed Seed values
Conversion Deterministic Deterministic
to binary algorithm algorithm
Random Pseudorandom Pseudorandom
bit stream bit stream value
(a) TRNG (b) PRNG (¢c) PRF

TRNG = true random number generator
PRNG = pseudorandom number generator
PRF = pseudorandom function

Random and Pseudorandom Number Generators

instantaneous values of the system clock. The source, or combination of sources,
serve as input to an algorithm that produces random binary output. The TRNG
may simply involve conversion of an analog source to a binary output. The
TRNG may involve additional processing to overcome any bias in the source; this
is discussed in Section 7.6.

In contrast, a PRNG takes as input a fixed value, called the seed, and produces
a sequence of output bits using a deterministic algorithm. Quite often, the seed is
generated by a TRNG. Typically, as shown, there is some feedback path by which
some of the results of the algorithm are fed back as input as additional output bits
are produced. The important thing to note is that the output bit stream is determined
solely by the input value or values, so that an adversary who knows the algorithm and
the seed can reproduce the entire bit stream.

Figure 7.1 shows two different forms of PRNGs, based on application.

Pseudorandom number generator: An algorithm that is used to produce an
open-ended sequence of bits is referred to as a PRNG. A common application
for an open-ended sequence of bits is as input to a symmetric stream cipher, as
discussed in Section 7.4. Also, see Figure 3.1a.

Pseudorandom function (PRF): A PRF is used to produced a pseudoran-
dom string of bits of some fixed length. Examples are symmetric encryption
keys and nonces. Typically, the PRF takes as input a seed plus some
context specific values, such as a user ID or an application ID. A number
of examples of PRFs will be seen throughout this book, notably in
Chapters 17 and 18.

Other than the number of bits produced, there is no difference between a PRNG
and a PRF. The same algorithms can be used in both applications. Both require a seed

207

and both must exhibit randomness and unpredictability. Further, a PRNG applica-
tion may also employ context-specific input. In what follows, we make no distinction
between these two applications.

When a PRNG or PREF is used for a cryptographic application, then the basic
requirement is that an adversary who does not know the seed is unable to deter-
mine the pseudorandom string. For example, if the pseudorandom bit stream is
used in a stream cipher, then knowledge of the pseudorandom bit stream would
enable the adversary to recover the plaintext from the ciphertext. Similarly, we
wish to protect the output value of a PRF. In this latter case, consider the follow-
ing scenario. A 128-bit seed, together with some context-specific values, are used
to generate a 128-bit secret key that is subsequently used for symmetric encryp-
tion. Under normal circumstances, a 128-bit key is safe from a brute-force attack.
However, if the PRF does not generate effectively random 128-bit output values,
it may be possible for an adversary to narrow the possibilities and successfully use
a brute force attack.

This general requirement for secrecy of the output of a PRNG or PRF leads to
specific requirements in the areas of randomness, unpredictability, and the charac-
teristics of the seed. We now look at these in turn.

In terms of randomness, the requirement for a PRNG is that the gen-
erated bit stream appear random even though it is deterministic. There is no single
test that can determine if a PRNG generates numbers that have the characteristic
of randomness. The best that can be done is to apply a sequence of tests to the
PRNG. If the PRNG exhibits randomness on the basis of multiple tests, then it can
be assumed to satisfy the randomness requirement. NIST SP 800-22 (A Statistical
Test Suite for Random and Pseudorandom Number Generators for Cryptographic
Applications) specifies that the tests should seek to establish the following three
characteristics.

Uniformity: At any point in the generation of a sequence of random or pseudo-
random bits, the occurrence of a zero or one is equally likely, that is, the prob-
ability of each is exactly 1/2. The expected number of zeros (or ones) is n/2,
where n = the sequence length.

Scalability: Any test applicable to a sequence can also be applied to subse-
quences extracted at random. If a sequence is random, then any such extracted
subsequence should also be random. Hence, any extracted subsequence
should pass any test for randomness.

Consistency: The behavior of a generator must be consistent across starting
values (seeds). It is inadequate to test a PRNG based on the output from a
single seed or an TRNG on the basis of an output produced from a single
physical output.

SP 800-22 lists 15 separate tests of randomness. An understanding of these
tests requires a basic knowledge of statistical analysis, so we don’t attempt a

208

technical description here. Instead, to give some flavor for the tests, we list three of
the tests and the purpose of each test, as follows.

Frequency test: This is the most basic test and must be included in any test
suite. The purpose of this test is to determine whether the number of ones and
zeros in a sequence is approximately the same as would be expected for a truly
random sequence.

Runs test: The focus of this test is the total number of runs in the sequence,
where a run is an uninterrupted sequence of identical bits bounded before
and after with a bit of the opposite value. The purpose of the runs test is to
determine whether the number of runs of ones and zeros of various lengths is
as expected for a random sequence.

Maurer’s universal statistical test: The focus of this test is the number of bits
between matching patterns (a measure that is related to the length of a com-
pressed sequence). The purpose of the test is to detect whether or not the
sequence can be significantly compressed without loss of information. A sig-
nificantly compressible sequence is considered to be non-random.

A stream of pseudorandom numbers should exhibit two forms
of unpredictability:

Forward unpredictability: If the seed is unknown, the next output bit in the
sequence should be unpredictable in spite of any knowledge of previous bits in
the sequence.

Backward unpredictability: It should also not be feasible to determine the
seed from knowledge of any generated values. No correlation between a seed
and any value generated from that seed should be evident; each element of the
sequence should appear to be the outcome of an independent random event
whose probability is 1/2.

The same set of tests for randomness also provide a test of unpredictability. If the
generated bit stream appears random, then it is not possible to predict some bit or bit
sequence from knowledge of any previous bits. Similarly, if the bit sequence appears
random, then there is no feasible way to deduce the seed based on the bit sequence.
That is, a random sequence will have no correlation with a fixed value (the seed).

For cryptographic applications, the seed that serves as input to
the PRNG must be secure. Because the PRNG is a deterministic algorithm, if the
adversary can deduce the seed, then the output can also be determined. Therefore,
the seed must be unpredictable. In fact, the seed itself must be a random or pseudo-
random number.

Typically, the seed is generated by a TRNG, as shown in Figure 7.2. This is the
scheme recommended by SP800-90. The reader may wonder, if a TRNG is avail-
able, why it is necessary to use a PRNG. If the application is a stream cipher, then
a TRNG is not practical. The sender would need to generate a keystream of bits as
long as the plaintext and then transmit the keystream and the ciphertext securely to
the receiver. If a PRNG is used, the sender need only find a way to deliver the stream
cipher key, which is typically 54 or 128 bits, to the receiver in a secure fashion.

209

Entropy
source

l

True random
number generator
(TRNG)

Seed

Y

Pseudorandom
number generator
(PRNG)

l

Pseudorandom
bit stream

Generation of Seed Input to PRNG

Even in the case of a PRF application, in which only a limited number of bits
is generated, it is generally desirable to use a TRNG to provide the seed to the
PRF and use the PRF output rather than use the TRNG directly. As is explained
in Section 7.6, a TRNG may produce a binary string with some bias. The PRF
would have the effect of “randomizing” the output of the TRNG so as to eliminate
that bias.

Finally, the mechanism used to generate true random numbers may not be
able to generate bits at a rate sufficient to keep up with the application requiring
the random bits.

Cryptographic PRNGs have been the subject of much research over the years,
and a wide variety of algorithms have been developed. These fall roughly into two
categories.

Purpose-built algorithms: These are algorithms designed specifically and
solely for the purpose of generating pseudorandom bit streams. Some of these
algorithms are used for a variety of PRNG applications; several of these are
described in the next section. Others are designed specifically for use in a
stream cipher. The most important example of the latter is RC4, described in
Section 7.5.

Algorithms based on existing cryptographic algorithms: Cryptographic algo-
rithms have the effect of randomizing input data. Indeed, this is a require-
ment of such algorithms. For example, if a symmetric block cipher produced
ciphertext that had certain regular patterns in it, it would aid in the process of
cryptanalysis. Thus, cryptographic algorithms can serve as the core of PRNGs.

210 CHAPTER 7 / PSEUDORANDOM NUMBER GENERATION AND STREAM CIPHERS

Three broad categories of cryptographic algorithms are commonly used to
create PRNGs:

—Symmetric block ciphers: This approach is discussed in Section 7.3.

— Asymmetric ciphers: The number theoretic concepts used for an asym-
metric cipher can also be adapted for a PRNG; this approach is examined in
Chapter 10.

—Hash functions and message authentication codes: This approach is exam-
ined in Chapter 12.

Any of these approaches can yield a cryptographically strong PRNG.
A purpose-built algorithm may be provided by an operating system for general use.
For applications that already use certain cryptographic algorithms for encryption
or authentication, it makes sense to reuse the same code for the PRNG. Thus, all of
these approaches are in common use.

7.2 PSEUDORANDOM NUMBER GENERATORS

In this section, we look at two types of algorithms for PRNGs.

Linear Congruential Generators

A widely used technique for pseudorandom number generation is an algorithm first
proposed by Lehmer [LEHMS51], which is known as the linear congruential method.
The algorithm is parameterized with four numbers, as follows:

m the modulus m >0
a the multiplier O0<a<m
c the increment O0=c<m
Xy the starting value,orseed 0= X, <m
The sequence of random numbers {.X,} is obtained via the following iterative
equation:

X,+1 = (aX, + c)mod m

If m, a, ¢, and X, are integers, then this technique will produce a sequence of inte-
gers with each integer in the range 0 = X,, < m.

The selection of values for a, ¢, and m is critical in developing a good ran-
dom number generator. For example, consider a = ¢ = 1. The sequence produced
is obviously not satisfactory. Now consider the values a = 7, ¢ = 0, m = 32, and
X, = 1. This generates the sequence {7, 17,23, 1, 7, etc.}, which is also clearly un-
satisfactory. Of the 32 possible values, only four are used; thus, the sequence is said
to have a period of 4. If, instead, we change the value of a to 5, then the sequence is
{5,25,29,17,21,9, 13, 1, 5, etc.}, which increases the period to 8.

We would like m to be very large, so that there is the potential for producing
a long series of distinct random numbers. A common criterion is that m be nearly
equal to the maximum representable nonnegative integer for a given computer.
Thus, a value of m near to or equal to 23! is typically chosen.

211

[PARKS88a] proposes three tests to be used in evaluating a random number
generator:

T;: The function should be a full-period generating function. That is, the function
should generate all the numbers from 0 through m — 1 before repeating.

T,: The generated sequence should appear random.
T;: The function should implement efficiently with 32-bit arithmetic.

With appropriate values of a, ¢, and m, these three tests can be passed. With
respect to Tj, it can be shown that if m is prime and ¢ = 0, then for certain values
of a the period of the generating function is m — 1, with only the value 0 missing.
For 32-bit arithmetic, a convenient prime value of 2 is 2°! — 1. Thus, the generating
function becomes

X,41 = (aX,) mod 2! — 1)

Of the more than 2 billion possible choices for a, only a handful of multipliers
pass all three tests. One such value isa = 7° = 16807, which was originally selected
for use in the IBM 360 family of computers [LEWI69]. This generator is widely used
and has been subjected to a more thorough testing than any other PRNG. It is fre-
quently recommended for statistical and simulation work (e.g., [JAIN91]).

The strength of the linear congruential algorithm is that if the multiplier and
modulus are properly chosen, the resulting sequence of numbers will be statisti-
cally indistinguishable from a sequence drawn at random (but without replacement)
from the set 1,2, ...,m — 1. But there is nothing random at all about the algo-
rithm, apart from the choice of the initial value X,. Once that value is chosen, the
remaining numbers in the sequence follow deterministically. This has implications
for cryptanalysis.

If an opponent knows that the linear congruential algorithm is being used and
if the parameters are known (e.g., a = 7°, ¢ = 0, m = 23! — 1), then once a single
number is discovered, all subsequent numbers are known. Even if the opponent
knows only that a linear congruential algorithm is being used, knowledge of a small
part of the sequence is sufficient to determine the parameters of the algorithm.
Suppose that the opponent is able to determine values for X, X;, X3, and X3. Then

Xl = ([lXO + C)modm
X, = (aX;| + c)mod m
X; = (aX; + ¢c)mod m

These equations can be solved for a, ¢, and m.

Thus, although it is nice to be able to use a good PRNG, it is desirable to make
the actual sequence used nonreproducible, so that knowledge of part of the se-
quence on the part of an opponent is insufficient to determine future elements of the
sequence. This goal can be achieved in a number of ways. For example, [BRIG79]
suggests using an internal system clock to modify the random number stream. One
way to use the clock would be to restart the sequence after every N numbers using
the current clock value (mod m) as the new seed. Another way would be simply to
add the current clock value to each random number (mod m).

212

A popular approach to generating secure pseudorandom numbers is known as
the Blum Blum Shub (BBS) generator (see Figure 7.3), named for its developers
[BLUMS6]. It has perhaps the strongest public proof of its cryptographic strength
of any purpose-built algorithm. The procedure is as follows. First, choose two large
prime numbers, p and g, that both have a remainder of 3 when divided by 4. That is,

p = g = 3(mod 4)

This notation, explained more fully in Chapter 4, simply means that (p mod 4) =
(¢ mod 4) = 3.For example, the prime numbers 7 and 11 satisfy 7 = 11 = 3(mod 4).
Letn = p X g.Next,choose a random number s, such that s is relatively prime to #;
this is equivalent to saying that neither p nor g is a factor of s. Then the BBS genera-
tor produces a sequence of bits B; according to the following algorithm:

Xo = s’ mod n
fori = 1to =
X; = (X;-1)%2 mod n
B; = X; mod 2

Thus, the least significant bit is taken at each iteration. Table 7.1 shows an example
of BBS operation. Here, n = 192649 = 383 X 503, and the seed s = 101355.

The BBS is referred to as a cryptographically secure pseudorandom bit gen-
erator (CSPRBG). A CSPRBG is defined as one that passes the next-bit test, which,
in turn, is defined as follows [MENE97]: A pseudorandom bit generator is said to
pass the next-bit test if there is not a polynomial-time algorithm? that, on input of
the first k bits of an output sequence, can predict the (kK + 1)st bit with probability

Initialize

with seed s\

Generate
x2mod n

Select least
significant bit

|

[0, 1]
Blum Blum Shub Block Diagram

2A polynomial-time algorithm of order k is one whose running time is bounded by a polynomial of order k.

7.3 / PSEUDORANDOM NUMBER GENERATION USING A BLOCK CIPHER 213

Table 7.1 Example Operation of BBS Generator

i X; B; i X; B;
0 20749 11 137922 0
1 143135 1 12 123175 1
2 177671 1 13 8630 0
3 97048 0 14 114386 0
4 89992 0 15 14863 1
5 174051 1 16 133015 1
6 80649 1 17 106065 1
7 45663 1 18 45870 0
8 69442 0 19 137171 1
9 186894 0 20 48060 0
10 177046 0

significantly greater than 1/2. In other words, given the first k bits of the sequence,
there is not a practical algorithm that can even allow you to state that the next bit
will be 1 (or 0) with probability greater than 1/2. For all practical purposes, the
sequence is unpredictable. The security of BBS is based on the difficulty of factoring #.
That is, given n, we need to determine its two prime factors p and g.

7.3 PSEUDORANDOM NUMBER GENERATION USING
A BLOCK CIPHER

A popular approach to PRNG construction is to use a symmetric block cipher as
the heart of the PRNG mechanism. For any block of plaintext, a symmetric block
cipher produces an output block that is apparently random. That is, there are no
patterns or regularities in the ciphertext that provide information that can be used
to deduce the plaintext. Thus, a symmetric block cipher is a good candidate for
building a pseudorandom number generator.

If an established, standardized block cipher is used, such as DES or AES, then
the security characteristics of the PRNG can be established. Further, many applica-
tions already make use of DES or AES, so the inclusion of the block cipher as part
of the PRNG algorithm is straightforward.

PRNG Using Block Cipher Modes of Operation

Two approaches that use a block cipher to build a PNRG have gained widespread
acceptance: the CTR mode and the OFB mode. The CTR mode is recommended in
NIST SP 800-90, in the ANSI standard X9.82 (Random Number Generation), and in
RFC 4086. The OFB mode is recommended in X9.82 and RFC 4086.

Figure 7.4 illustrates the two methods. In each case, the seed consists of two
parts: the encryption key value and a value V that will be updated after each block
of pseudorandom numbers is generated. Thus, for AES-128, the seed consists of a
128-bit key and a 128-bit V value. In the CTR case, the value of V is incremented by 1
after each encryption. In the case of OFB, the value of V is updated to equal the

214

Y Y

K ——>» Encrypt K—>»] Encrypt
l v
Pseudorandom bits Pseudorandom bits
(a) CTR mode (b) OFB mode

PRNG Mechanisms Based on Block Ciphers

value of the preceding PRNG block. In both cases, pseudorandom bits are produced
one block at a time (e.g., for AES, PRNG bits are generated 128 bits at a time).

The CTR algorithm for PRNG, called CTR_DRBG, can be summarized as
follows.

while (len (temp) < requested number of bits) do

V = (V + 1) mod 228,
output block = E(Key, V)
temp = temp || ouput block

The OFB algorithm can be summarized as follows.

while (len (temp) < requested number of bits) do
V = E(Key, V)
temp = temp || V

To get some idea of the performance of these two PRNGs, consider the fol-
lowing short experiment. A random bit sequence of 256 bits was obtained from
random.org, which uses three radios tuned between stations to pick up atmospheric
noise. These 256 bits form the seed, allocated as

Key: cfb0e£3108d49cc4562d5810b0a%af60
V: 4c89af496176b728edle2ea8ba27£5a4

The total number of one bits in the 256-bit seed is 124, or a fraction of 0.48,
which is reassuringly close to the ideal of 0.5.

For the OFB PRNG, Table 7.2 shows the first eight output blocks (1024 bits)
with two rough measures of security. The second column shows the fraction of one
bits in each 128-bit block. This corresponds to one of the NIST tests. The results
indicate that the output is split roughly equally between zero and one bits. The third

215

Example Results for PRNG Using OFB

Fraction of Bits that
Fraction of Match with
Output Block One Bits Preceding Block
1786£f4c7££6e291dbdfdd90ec3453176 0.57 =
5el17b22b14677a4d66890£87565eae64 0.51 0.52
£d18284ac82251dfb3aa62c326cd46cc 0.47 0.54
c8e545198a758e£5dd86b41946389bd5 0.50 0.44
fe7bae0e23019542962e2c52d215a2e3 0.47 0.48
14£fdf5ec99469598ae0379472803accd 0.49 0.52
6aeca972e5a3ef17bd1lalb775£c8b929 0.57 0.48
£7e97badf359d128£00d9b4ae323db64 0.55 0.45
Example Results for PRNG Using CTR
Fraction of Bits that
Fraction of One Match with
Output Block Bits Preceding Block
1786f4c7£f£6e291dbdfdd90ec3453176 0.57 =
60809669a3e092a01b463472fdcae420 0.41 0.41
d4e6el70b46b0573eedf88ee39bff33d 0.59 0.45
5f8fcfc5decal8ea246785d7fadc76£8 0.59 0.52
90e63ed27bb07868c753545bdd57ee28 0.53 0.52
0125856£fdf4al17£747¢7833695c52235 0.50 0.47
£f4be2d179b0£2548£d748c8£c7c81990 0.51 0.48
1151fc48f90eebac658a3911515c3c66 0.47 0.45

column shows the fraction of bits that match between adjacent blocks. If this num-
ber differs substantially from 0.5, that suggests a correlation between blocks, which
could be a security weakness. The results suggest no correlation.

Table 7.3 shows the results using the same key and V values for CTR mode.
Again, the results are favorable.

One of the strongest (cryptographically speaking) PRNGs is specified in ANSI
X9.17. A number of applications employ this technique, including financial security
applications and PGP (the latter described in Chapter 19).

Figure 7.5 illustrates the algorithm, which makes use of triple DES for encryp-
tion. The ingredients are as follows.

Input: Two pseudorandom inputs drive the generator. One is a 64-bit rep-
resentation of the current date and time, which is updated on each number
generation. The other is a 64-bit seed value; this is initialized to some arbitrary
value and is updated during the generation process.

Keys: The generator makes use of three triple DES encryption modules. All
three make use of the same pair of 56-bit keys, which must be kept secret and
are used only for pseudorandom number generation.

216

K, K,
\]
DT, EDE
N A
(D EDE Vi,
v, EDE

R.

i

ANSI X9.17 Pseudorandom Number Generator

Output: The output consists of a 64-bit pseudorandom number and a 64-bit
seed value.

Let us define the following quantities.

DT, Date/time value at the beginning of ith generation stage
V; Seed value at the beginning of ith generation stage
R; Pseudorandom number produced by the ith generation stage

K, K, DES keys used for each stage

R; = EDE([K},K;],[V; ® EDE([K}, K], DT)])
vi+1 = EDE([K1>K2]> [Ri @ EDE([KviZJan)])

where EDE([K},K;], X) refers to the sequence encrypt-decrypt-encrypt using
two-key triple DES to encrypt X.

Several factors contribute to the cryptographic strength of this method. The
technique involves a 112-bit key and three EDE encryptions for a total of nine DES
encryptions. The scheme is driven by two independent inputs, the date and time
value, and a seed produced by the generator that is distinct from the pseudorandom
number produced by the generator. Thus, the amount of material that must be com-
promised by an opponent appears to be overwhelming. Even if a pseudorandom
number R; were compromised, it would be impossible to deduce the V;,; from the
R;, because an additional EDE operation is used to produce the V.

We now look more closely at the details of the PRNG defined in NIST SP 800-90
based on the CTR mode of operation. The PRNG is referred to as CTR_DRBG
(counter mode—deterministic random bit generator). CTR_DRBG is widely imple-
mented and is part of the hardware random number generator implemented on all
recent Intel processor chips (discussed in Section 7.6).

217

The DRBG assumes that an entropy source is available to provide random
bits. Typically, the entropy source will be a TRNG based on some physical source.
Other sources are possible if they meet the required entropy measure of the appli-
cation. Entropy is an information theoretic concept that measures unpredictability,
or randomness; see Appendix F for details. The encryption algorithm used in the
DRBG may be 3DES with three keys or AES with a key size of 128, 192, or 256 bits.

Four parameters are associated with the algorithm:

Output block length (outlen): Length of the output block of the encryption
algorithm.

Key length (keylen): Length of the encryption key.

Seed length (seedlen): The seed is a string of bits that is used as input to a
DRBG mechanism. The seed will determine a portion of the internal state of
the DRBG, and its entropy must be sufficient to support the security strength
of the DRBG. seedlen = outlen + keylen.

Reseed interval (reseed_interval): Length of the encryption key. It is the maxi-
mum number of output blocks generated before updating the algorithm with a
new seed.

Table 7.4 lists the values specified in SP 800-90 for these parameters.

Figure 7.6 shows the two principal functions that comprise CTR_DRBG.
We first consider how CTR_DRBG is initialized, using the initialize and update
function (Figure 7.6a). Recall that the CTR block cipher mode requires both an
encryption key K and an initial counter value, referred to in SP 800-90 as the coun-
ter V. The combination of K and V is referred to as the seed. To start the DRGB
operation, initial values for K and V are needed, and can be chosen arbitrarily. As
an example, the Intel Digital Random Number Generator, discussed in Section 7.6,
uses the values K = 0 and V' = 0. These values are used as parameters for the CTR
mode of operation to produce at least seedlen bits. In addition, exactly seedlen bits
must be supplied from what is referred to as an entropy source. Typically, the en-
tropy source would be some form of TRNG.

With these inputs, the CTR mode of encryption is iterated to produce a
sequence of output blocks, with V incremented by 1 after each encryption. The pro-
cess continues until at least seedlen bits have been generated. The leftmost seedlen
bits of output are then XORed with the seedlen entropy bits to produce a new seed.
In turn, the leftmost keylen bits of the seed form the new key and the rightmost
outlen bits of the seed form the new counter value V.

CTR_DRBG Parameters

3DES AES-128 AES-192 AES-256
outlen 64 128 128 128
keylen 168 128 192 256
seedlen 232 256 320 384
reseed_interval =23 =y =% =248

218

: Iterate
t_1 st 1
1me
VvV ‘?_‘)

Key

Entropy
source

! 1 Iterate

Key l \ %4 |

(b) Generate function

CTR_DRBG Functions

OncevaluesofKeyand Vareobtained,theDRBGentersthegeneratephaseand
is able to generate pseudorandom bits, one output block at a time (Figure 7.6b).
The encryption function is iterated to generate the number of pseudorandom bits
desired. Each iteration uses the same encryption key. The counter value V is incre-
mented by 1 for each iteration.

To enhance security, the number of bits generated by any PRNG should
be limited. CTR_DRGB uses the parameter reseed_interval to set that limit. During
the generate phase, a reseed counter is initialized to 1 and then incremented with
each iteration (each production of an output block). When the reseed counter

7.4 / STREAM CIPHERS 219

reaches reseed_interval, the update function is invoked (Figure 7.6a). The update
function is the same as the initialize function. In the update case, the Key and V val-
ues last used by the generate function serve as the input parameters to the update
function. The update function takes seedlen new bits from an entropy source and
produces a new seed (Key, V). The generate function can then resume production
of pseudorandom bits. Note that the result of the update function is to change both
the Key and V values used by the generate function.

7.4 STREAM CIPHERS

A typical stream cipher encrypts plaintext one byte at a time, although a stream
cipher may be designed to operate on one bit at a time or on units larger than a byte
at a time. Figure 7.7 is a representative diagram of stream cipher structure. In this
structure, a key is input to a pseudorandom bit generator that produces a stream
of 8-bit numbers that are apparently random. The output of the generator, called
a keystream, is combined one byte at a time with the plaintext stream using the
bitwise exclusive-OR (XOR) operation. For example, if the next byte generated by
the generator is 01101100 and the next plaintext byte is 11001100, then the resulting
ciphertext byte is

11001100 plaintext
@ 01101100 key stream
10100000 ciphertext

Decryption requires the use of the same pseudorandom sequence:

10100000 ciphertext
@ 01101100 key stream
11001100 plaintext

Key Key
K K
Pseudorandom byte Pseudorandom byte
generator generator
(key stream generator) (key stream generator)
k k
Plaintext Fany Ciphertext yany Plaintext
byte stream N byte stream N byte stream
M ENCRYPTION C DECRYPTION M

Figure 7.7 Stream Cipher Diagram

220

The stream cipher is similar to the one-time pad discussed in Chapter 2. The
difference is that a one-time pad uses a genuine random number stream, whereas a
stream cipher uses a pseudorandom number stream.

[KUMA97] lists the following important design considerations for a stream cipher.

The encryption sequence should have a large period. A pseudorandom num-
ber generator uses a function that produces a deterministic stream of bits that
eventually repeats. The longer the period of repeat the more difficult it will
be to do cryptanalysis. This is essentially the same consideration that was dis-
cussed with reference to the Vigenere cipher, namely that the longer the key-
word the more difficult the cryptanalysis.

The keystream should approximate the properties of a true random number
stream as close as possible. For example, there should be an approximately
equal number of 1s and Os. If the keystream is treated as a stream of bytes,
then all of the 256 possible byte values should appear approximately equally
often. The more random-appearing the keystream is, the more randomized the
ciphertext is, making cryptanalysis more difficult.

Note from Figure 7.7 that the output of the pseudorandom number genera-
tor is conditioned on the value of the input key. To guard against brute-force
attacks, the key needs to be sufficiently long. The same considerations that
apply to block ciphers are valid here. Thus, with current technology, a key
length of at least 128 bits is desirable.

With a properly designed pseudorandom number generator, a stream cipher
can be as secure as a block cipher of comparable key length. A potential advantage
of a stream cipher is that stream ciphers that do not use block ciphers as a building
block are typically faster and use far less code than do block ciphers. The example
in this chapter, RC4, can be implemented in just a few lines of code. In recent years,
this advantage has diminished with the introduction of AES, which is quite efficient
in software. Furthermore, hardware acceleration techniques are now available for
AES. For example, the Intel AES Instruction Set has machine instructions for one
round of encryption and decryption and key generation. Using the hardware in-
structions results in speedups of about an order of magnitude compared to pure
software implementations [XU10].

One advantage of a block cipher is that you can reuse keys. In contrast, if two
plaintexts are encrypted with the same key using a stream cipher, then cryptanalysis
is often quite simple [DAWS96]. If the two ciphertext streams are XORed together,
the result is the XOR of the original plaintexts. If the plaintexts are text strings,
credit card numbers, or other byte streams with known properties, then cryptanaly-
sis may be successful.

For applications that require encryption/decryption of a stream of data, such as
over a data communications channel or a browser/Web link, a stream cipher might
be the better alternative. For applications that deal with blocks of data, such as file
transfer, e-mail, and database, block ciphers may be more appropriate. However,
either type of cipher can be used in virtually any application.

A stream cipher can be constructed with any cryptographically strong PRNG,
such as the ones discussed in Sections 7.2 and 7.3. In the next section, we look at a
stream cipher that uses a PRNG designed specifically for the stream cipher.

7.5/ RrRC4 221

7.5 RC4

RC4 is a stream cipher designed in 1987 by Ron Rivest for RSA Security. It is a vari-
able key size stream cipher with byte-oriented operations. The algorithm is based
on the use of a random permutation. Analysis shows that the period of the cipher
is overwhelmingly likely to be greater than 10'® [ROBS95a]. Eight to sixteen ma-
chine operations are required per output byte, and the cipher can be expected to
run very quickly in software. RC4 is used in the Secure Sockets Layer/Transport
Layer Security (SSL/TLS) standards that have been defined for communication be-
tween Web browsers and servers. It is also used in the Wired Equivalent Privacy
(WEP) protocol and the newer WiFi Protected Access (WPA) protocol that are
part of the IEEE 802.11 wireless LAN standard. RC4 was kept as a trade secret by
RSA Security. In September 1994, the RC4 algorithm was anonymously posted on
the Internet on the Cypherpunks anonymous remailers list.

The RC4 algorithm is remarkably simple and quite easy to explain. A variable-
length key of from 1 to 256 bytes (8 to 2048 bits) is used to initialize a 256-byte state
vector S, with elements S[0],S[1], . . . ,S[255]. At all times, S contains a permutation
of all 8-bit numbers from 0 through 255. For encryption and decryption, a byte k (see
Figure 7.7) is generated from S by selecting one of the 255 entries in a systematic
fashion. As each value of k is generated, the entries in S are once again permuted.

Initialization of S

To begin, the entries of S are set equal to the values from 0 through 255 in ascend-
ing order; that is, S[0] = 0, S[1] = 1, ...,S[255] = 255. A temporary vector, T, is
also created. If the length of the key K is 256 bytes, then K is transferred to T.
Otherwise, for a key of length keylen bytes, the first keylen elements of T are copied
from K, and then K is repeated as many times as necessary to fill out T. These pre-
liminary operations can be summarized as

/* Initialization */
for i = 0 to 255 do
S[i] = 1i;

T[i] = K[i mod keylen];

Next we use T to produce the initial permutation of S. This involves starting
with S[0] and going through to S[255], and for each S[i], swapping S[i] with another
byte in S according to a scheme dictated by TT[i]:

/* Initial Permutation of S */

j = 0;
for i = 0 to 255 do
j = (3 + S[i] + TI[i]) mod 256;

Swap (S[i], SI[3jl);

Because the only operation on S is a swap, the only effect is a permutation.
S still contains all the numbers from 0 through 255.

222

Once the S vector is initialized, the input key is no longer used. Stream generation
involves cycling through all the elements of S[i], and for each S[i], swapping S[i]
with another byte in S according to a scheme dictated by the current configuration
of S. After S[255] is reached, the process continues, starting over again at S[0]:

/* Stream Generation */

i, j = 0;
while (true)

i = (i + 1) mod 256;

j = (J + S[i]l) mod 256;
Swap (S[i], S[jl);
t = (S[i] + S[j]) mod 256;
k = s[t];

To encrypt, XOR the value k with the next byte of plaintext. To decrypt, XOR
the value k with the next byte of ciphertext.
Figure 7.8 illustrates the RC4 logic.

s D [a]e]

Keylen >

= T v 13 1 1
T||||...||||...ﬁ |||||...ﬂ

(a) Initial state of S and T

TIIIIII--- [T 1]

J=j+S[i] + T[] =

s -~ Ed - W [

1 > Swa

(b) Initial permutation of S

J=Jj+Sli]

sCICC -~ E -

._
A\ 4
)
K]
1)
=]

t = S[i] + S[jl
(c) Stream generation

RC4

223

A number of papers have been published analyzing methods of attacking RC4
(e.g., [KNUD98], [FLUHO00], [MANTO1]). None of these approaches is practical
against RC4 with a reasonable key length, such as 128 bits. A more serious prob-
lem is reported in [FLUHO1]. The authors demonstrate that the WEP protocol,
intended to provide confidentiality on 802.11 wireless LAN networks, is vulner-
able to a particular attack approach. In essence, the problem is not with RC4 itself
but the way in which keys are generated for use as input to RC4. This particular
problem does not appear to be relevant to other applications using RC4 and can be
remedied in WEP by changing the way in which keys are generated. This problem
points out the difficulty in designing a secure system that involves both cryptographic
functions and protocols that make use of them.

A true random number generator (TRNG) uses a nondeterministic source to
produce randomness. Most operate by measuring unpredictable natural pro-
cesses, such as pulse detectors of ionizing radiation events, gas discharge tubes,
and leaky capacitors. Intel has developed a commercially available chip that sam-
ples thermal noise by amplifying the voltage measured across undriven resistors
[JUN99]. LavaRnd is an open source project for creating truly random numbers
using inexpensive cameras, open source code, and inexpensive hardware. The
system uses a saturated CCD in a light-tight can as a chaotic source to produce
the seed. Software processes the result into truly random numbers in a variety of
formats.

RFC 4086 lists the following possible sources of randomness that, with care,
easily can be used on a computer to generate true random sequences.

Sound/video input: Many computers are built with inputs that digitize some
real-world analog source, such as sound from a microphone or video input
from a camera. The “input” from a sound digitizer with no source plugged
in or from a camera with the lens cap on is essentially thermal noise. If the
system has enough gain to detect anything, such input can provide reasonably
high quality random bits.

Disk drives: Disk drives have small random fluctuations in their rotational
speed due to chaotic air turbulence [JAKO98]. The addition of low-level disk
seek-time instrumentation produces a series of measurements that contain
this randomness. Such data is usually highly correlated, so significant process-
ing is needed. Nevertheless, experimentation a decade ago showed that, with
such processing, even slow disk drives on the slower computers of that day
could easily produce 100 bits a minute or more of excellent random data.

There is also an online service (random.org), which can deliver random
sequences securely over the Internet.

224

Table 7.5 summarizes the principal differences between PRNGs and TRNGs.
PRNGs are efficient, meaning they can produce many numbers in a short time, and
deterministic, meaning that a given sequence of numbers can be reproduced at a
later date if the starting point in the sequence is known. Efficiency is a nice char-
acteristic if your application needs many numbers, and determinism is handy if you
need to replay the same sequence of numbers again at a later stage. PRNGs are
typically also periodic, which means that the sequence will eventually repeat itself.
While periodicity is hardly ever a desirable characteristic, modern PRNGs have a
period that is so long that it can be ignored for most practical purposes.

TRNGs are generally rather inefficient compared to PRNGs, taking consid-
erably longer time to produce numbers. This presents a difficulty in many applica-
tions. For example, cryptography system in banking or national security might need
to generate millions of random bits per second. TRNGs are also nondeterministic,
meaning that a given sequence of numbers cannot be reproduced, although the same
sequence may of course occur several times by chance. TRNGs have no period.

A TRNG may produce an output that is biased in some way, such as having more
ones than zeros or vice versa. Various methods of modifying a bit stream to re-
duce or eliminate the bias have been developed. These are referred to as deskewing
algorithms. One approach to deskew is to pass the bit stream through a hash function,
such as MDS5 or SHA-1 (described in Chapter 11). The hash function produces an
n-bit output from an input of arbitrary length. For deskewing, blocks of m input bits,
with m = n, can be passed through the hash function. RFC 4086 recommends collect-
ing input from multiple hardware sources and then mixing these using a hash function
to produce random output.

Operating systems typically provide a built-in mechanism for generating ran-
dom numbers. For example, Linux uses four entropy sources: mouse and keyboard
activity, disk I/O operations, and specific interrupts. Bits are generated from these
four sources and combined in a pooled buffer. When random bits are needed, the
appropriate number of bits are read from the buffer and passed through the SHA-1
hash function [GUTTO6].

As was mentioned, TRNGs have traditionally been used only for key generation
and other applications where only a small number of random bits were required.
This is because TRNGs have generally been inefficient, with a low bit rate of ran-
dom bit production.

Comparison of PRNGs and TRNGs

Pseudorandom Number True Random Number
Generators Generators
Efficiency Very efficient Generally inefficient
Determinism Deterministic Nondeterministic
Periodicity Periodic Aperiodic

225

The first commercially available TRNG that achieves bit production rates
comparable with that of PRNGs is the Intel digital random number generator
(DRNG) [TAYL11], offered on new multicore chips since May 2012.

Two notable aspects of the DRNG:

Itis implemented entirely in hardware. This provides greater security than a facil-
ity that includes a software component. A hardware-only implementation should
also be able to achieve greater computation speed than a software module.

The entire DRNG is on the same multicore chip as the processors. This elimi-
nates the I/O delays found in other hardware random number generators.

Figure 7.9 shows the overall structure of the
DRNG. The first stage of the DRNG generates random numbers from thermal
noise. The heart of the stage consists of two inverters (NOT gates), with the output
of each inverter connected to the input of the other. Such an arrangement has two
stable states, with one inverter having an output of logical 1 and the other having an
output of logical 0. The circuit is then configured so that both inverters are forced
to have the same indeterminate state (both inputs and both outputs at logical 1)
by clock pulses. Random thermal noise within the inverters soon jostles the two
inverters into a mutually stable state. Additional circuitry is intended to compensate
for any biases or correlations. This stage is capable, with current hardware, of
generating random bits at a rate of 4 Gbps.

The output of the first stage is generated 512 bits at a time. To assure that
the bit stream does not have skew or bias, a second stage of processing randomizes
its input using a cryptographic function. In this case, the function is referred to
as CBC-MAC or CMAG, as specified in NIST SP 800-38B. In essence, CMAC

Hardware Random Number Generator
Nondeterministic Nondeterministic

random Hardware random
Hardware numbers AES CBC seeds
entropy

source 512 bits MAC-based ["356 bits
conditioner

Hardware
SP800-90
AES-CTR-
based
PRNG

128 bits
RDRAND ’
[COI‘G 0 instruction
Processor O
Chip °
]
[Core N-1 RDRAND J<—
instruction

Intel Processor Chip with Random Number Generator

226 CHAPTER 7 / PSEUDORANDOM NUMBER GENERATION AND STREAM CIPHERS

encrypts its input using the cipher block chaining (CBC) mode (Figure 6.4) and
outputs the final block. We examine CMAC in detail in Chapters 12. The output of
this stage is generated 256 bits at a time and is intended to exhibit true randomness
with no skew or bias.

While the hardware’s circuitry generates random numbers from thermal noise
much more quickly than its predecessors, it’s still not fast enough for some of to-
day’s computing requirements. To enable the DRNG to generate random numbers

Transistor 1 Transistor 2
Clock—0)|
Inverters
Node A Node B
Hardware
entropy
source

=) E=] [E= =)

———¢ ——®
L Encrypt i Encrypt L Encrypt S Encrypt
I AES CBC | 128 bits I | 128 bits I

: Mac-based

I st 1 1
| time 1
1
! é—,| 128 bits | |J£= |
1
: 1 |
1 '{l Key | v | 1
1 K=0 A 1
1
1 I—» Encrypt G- Encrypt :
| AES-CTR- ! !
1 based n 1
256 bit —
: PRNG I - Ié- :
Pseudorandom

bits
Figure 7.10 Intel DRNG Logical Structure

227

as quickly as software PRNG, and also maintain the high quality of the random num-
bers, a third stage is added. This stage uses the 256-bit random numbers to seed
a cryptographically secure PRNG that creates 128-bit numbers. From one 256-bit
seed, the PRNG can output many pseudorandom numbers, exceeding the 3-Gbps
rate of the entropy source. An upper bound of 511 128-bit samples can be generated
per seed. The algorithm used for this stage is CTR_DRBG, described in Section 7.3.

The output of the DRNG is available to each of the cores on the chip via the
RDRAND instruction. RDRAND retrieves a 16-, 32-, or 64-bit random value and
makes it available in a software-accessible register.

Preliminary data from a pre-production sample on a system with a third
generation Intel® Core™ family processor produced the following performance
[INTE12]: up to 70 million RDRAND invocations per second, and a random data
production rate of over 4 Gbps.

Figure 7 10 provides a simplified view of the logical
flow of the Intel DRNG. As was described, the heart of the hardware entropy source
is a pair of inverters that feed each other. Two transistors, driven by the same clock,
force the inputs and outputs of both inverters to the logical 1 state. Because this an
unstable state, thermal noise will cause the configuration to settle randomly into a
stable state with either Node A at logical 1 and Node B at logical 0, or the reverse.
Thus the module generates random bits at the clock rate.

The output of the entropy source is collected 512 bits at a time and used to
feed to two CBC hardware implementations using AES encryption. Each imple-
mentation takes two blocks of 128 bits of “plaintext” and encrypts using the CBC
mode. The output of the second encryption is retained. For both CBC modules, an
all-zeros key is used initially. Subsequently, the output of the PRNG stage is fed
back to become the key for the conditioner stage.

The output of the conditioner stage consists of 256 bits. This block is provided
as input to the update function of the PRNG stage. The update function is initial-
ized with the all-zeros key and the counter value 0. The function is iterated twice to
produce a 256-bit block, which is then XORed with the input from the conditioner
stage. The results are used as the 128-bit key and the 128-bit seed for the generate
function. The generate function produces pseudorandom bits in 128-bit blocks.

Perhaps the best treatment of PRNGs is found in [KNUT98]. An alternative to the stan-
dard linear congruential algorithm, known as the linear recurrence algorithm, is explained in
some detail in [BRIG79]. [ZENG91] assesses various PRNG algorithms for use in generating
variable-length keys for Vernam types of ciphers.

An excellent survey of PRNGs, with an extensive bibliography, is [RITT91]. [MENE97]
also provides a good discussions of secure PRNGs. Another good treatment, with an empha-
sis on practical implementation issues, is RFC 4086 [EASTO05]. This RFC also describes a
number of deskewing techniques. [KELS98] is a good survey of secure PRNG techniques
and cryptanalytic attacks on them. SP 800-90 [BARK12b] provides a useful treatment of a
variety of PRNGs recommended by NIST. SP 800-22 [RUKH10] defines and discusses the 15
statistical tests of randomness recommended by NIST.

228

[KUMAU97] contains an excellent and lengthy discussion of stream cipher design prin-
ciples. Another good treatment, quite mathematical, is [RUEP92]. [ROBS95a] is an interest-
ing and worthwhile examination of many design issues related to stream ciphers.

BARKI12b Barker, E., and Kelsey, J. Recommendation for Random Number Generation
Using Deterministic Random Bit Generators. NIST SP 800-90A, January 2012.

BRIG79 Bright, H., and Enison, R. “Quasi-Random Number Sequences from Long-
Period TLP Generator with Remarks on Application to Cryptography.” Computing
Surveys, December 1979.

EASTO05 Eastlake, D.;Schiller, J.; and Crocker, S. Randomness Requirements for Security.
RFC 4086, June 2005.

KELS98 Kelsey, J.; Schneier, B.; and Hall, C. “Cryptanalytic Attacks on Pseudorandom
Number Generators.” Proceedings, Fast Software Encryption, 1998. http://www.
schneier.com/paper-prngs.html

KNUT98 Knuth, D. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms. Reading, MA: Addison-Wesley, 1998.

KUMAY97 Kumar, I. Cryptology. Laguna Hills, CA: Aegean Park Press, 1997

MENE97 Menezes, A.; Oorshcot, P; and Vanstone, S. Handbook of Applied
Cryptography. Boca Raton, FL: CRC Press, 1997

RITTI91 Ritter, T. “The Efficient Generation of Cryptographic Confusion Sequences.”
Cryptologia, Vol. 15, No. 2, 1991. www.ciphersbyritter.com/ARTS/CRNG2ART.HTM

ROBS95a Robshaw, M. Stream Ciphers. RSA Laboratories Technical Report TR-701,
July 1995.

RUEP92 Rueppel, T. “Stream Ciphers.” In [SIMM92].

RUKH10 Rukhin, A., et al. A Statistical Test Suite for Random and Pseudorandom
Number Generators for Cryptographic Applications. NIST SP 800-22, April 2010.

SIMM92 Simmons, G., ed. Contemporary Cryptology: The Science of Information
Integrity. Piscataway, NJ: IEEE Press, 1992.

ZENGY1 Zeng, K.; Yang, C.; Wei, D.; and Rao, T. “Pseudorandom Bit Generators in
Stream-Cipher Cryptography.” Computer, February 1991.

backward unpredictability pseudorandom function stream cipher

Blum Blum Shub generator (PRF) skew

deskewing pseudorandom number true random number
entropy source generator (PRNG) generator (TRNG)
forward unpredictability randomness unpredictability
keystream RC4

linear congruential generator seed

http://www.schneier.com/paper-prngs.html
http://www.schneier.com/paper-prngs.html
www.ciphersbyritter.com/ARTS/CRNG2ART.HTM

229

What is the difference between statistical randomness and unpredictability?
List important design considerations for a stream cipher.

Why is it not desirable to reuse a stream cipher key?

What primitive operations are used in RC4?

If we take the linear congruential algorithm with an additive component of 0,
X,+1 = (aX,) mod m

Then it can be shown that if m is prime and if a given value of a produces the maxi-
mum period of m — 1, then a* will also produce the maximum period, provided that
k is less than m and that k and m — 1 are relatively prime. Demonstrate this by using
X, = 1and m = 31 and producing the sequences for a* = 3,32,3% and 3*.

What is the maximum period obtainable from the following generator?

X, = (aX,) mod2*

What should be the value of a?

What restrictions are required on the seed?
You may wonder why the modulus m = 23! — 1 was chosen for the linear congruen-
tial method instead of simply 2°!, because this latter number can be represented with
no additional bits and the mod operation should be easier to perform. In general, the
modulus 2¥ — 1 is preferable to 2€. Why is this so?
With the linear congruential algorithm, a choice of parameters that provides a full
period does not necessarily provide a good randomization. For example, consider the
following two generators:

X,+1 = (6X,)mod13
X,.1 = (7X,)mod 13

Write out the two sequences to show that both are full period. Which one appears
more random to you?

In any use of pseudorandom numbers, whether for encryption, simulation, or statisti-
cal design, it is dangerous to trust blindly the random number generator that happens
to be available in your computer’s system library. [PARKS88] found that many con-
temporary textbooks and programming packages make use of flawed algorithms for
pseudorandom number generation. This exercise will enable you to test your system.

The test is based on a theorem attributed to Ernesto Cesaro (see [KNUT98] for
a proof), which states the following: Given two randomly chosen integers, x and y,
the probability that ged(x,y) = 1 is 6/7%. Use this theorem in a program to deter-
mine statistically the value of 7. The main program should call three subprograms:
the random number generator from the system library to generate the random
integers; a subprogram to calculate the greatest common divisor of two integers
using Euclid’s Algorithm; and a subprogram that calculates square roots. If these
latter two programs are not available, you will have to write them as well. The main
program should loop through a large number of random numbers to give an estimate
of the aforementioned probability. From this, it is a simple matter to solve for your
estimate of .

If the result is close to 3.14, congratulations! If not, then the result is probably
low, usually a value of around 2.7. Why would such an inferior result be obtained?

230

Suppose you have a true random bit generator where each bit in the generated stream
has the same probability of being a 0 or 1 as any other bit in the stream and that the
bits are not correlated; that is the bits are generated from identical independent dis-
tribution. However, the bit stream is biased. The probability of a 1 is 0.5 + 9 and the
probability of a 0 is n, where 0 < 9 < 0.5. A simple deskewing algorithm is as fol-
lows: Examine the bit stream as a sequence of nonoverlapping pairs. Discard all 00
and 11 pairs. Replace each 01 pair with 0 and each 10 pair with 1.

What is the probability of occurrence of each pair in the original sequence?

What is the probability of occurrence of 0 and 1 in the modified sequence?

What is the expected number of input bits to produce x output bits?

Suppose that the algorithm uses overlapping successive bit pairs instead of non-

overlapping successive bit pairs. That is, the first output bit is based on input bits 1

and 2, the second output bit is based on input bits 2 and 3, and so on. What can you

say about the output bit stream?

Another approach to deskewing is to consider the bit stream as a sequence of non-
overlapping groups of n bits each and output the parity of each group. That is, if a
group contains an odd number of ones, the output is 1; otherwise the output is 0.
Express this operation in terms of a basic Boolean function.
Assume, as in the preceding problem, that the probability of a 1 is 0.5 + 4. If each
group consists of 2 bits, what is the probability of an output of 1?
If each group consists of 4 bits, what is the probability of an output of 1?
Generalize the result to find the probability of an output of 1 for input groups of
n bits.

What RC4 key value will leave S unchanged during initialization? That is, after the
initial permutation of S, the entries of S will be equal to the values from 0 through 255
in ascending order.

RC4 has a secret internal state which is a permutation of all the possible values of the
vector S and the two indices i and j.
Using a straightforward scheme to store the internal state, how many bits are
used?
Suppose we think of it from the point of view of how much information is repre-
sented by the state. In that case, we need to determine how may different states
there are, then take the log to base 2 to find out how many bits of information this
represents. Using this approach, how many bits would be needed to represent the
state?

Alice and Bob agree to communicate privately via email using a scheme based on
RC4, but they want to avoid using a new secret key for each transmission. Alice and
Bob privately agree on a 128-bit key k. To encrypt a message m, consisting of a string
of bits, the following procedure is used.

Choose a random 80-bit value v

Generate the ciphertext c = RC4(v||k) ® m

Send the bit string (v || ¢)

Suppose Alice uses this procedure to send a message m to Bob. Describe how Bob
can recover the message m from (v || ¢) using k.

If an adversary observes several values (v; | c;),(| c,),... transmitted between
Alice and Bob, how can he/she determine when the same key stream has been
used to encrypt two messages?

Approximately how many messages can Alice expect to send before the same key
stream will be used twice? Use the result from the birthday paradox described in
Appendix 11A [Equation (11.7)].

What does this imply about the lifetime of the key & (i.e., the number of messages
that can be encrypted using k)?

PART 2: ASsYMMETRIC CIPHERS

CHAPTER

MORE NUMBER THEORY

8.1 Prime Numbers
8.2 Fermat’s and Euler’s Theorems

Fermat’s Theorem
Euler’s Totient Function
Euler’s Theorem

8.3 Testing for Primality

Miller-Rabin Algorithm
A Deterministic Primality Algorithm
Distribution of Primes

8.4 The Chinese Remainder Theorem
8.5 Discrete Logarithms

The Powers of an Integer, Modulo »
Logarithms for Modular Arithmetic
Calculation of Discrete Logarithms

8.6 Recommended Reading

8.7 Key Terms, Review Questions, and Problems

231

232 CHAPTER 8 / MORE NUMBER THEORY

The Devil said to Daniel Webster: “Set me a task I can’t carry out, and I'll give you
anything in the world you ask for.”

Daniel Webster: “Fair enough. Prove that for n greater than 2, the equation
a* + b" = ¢" has no non-trivial solution in the integers.”

They agreed on a three-day period for the labor, and the Devil disappeared.

At the end of three days, the Devil presented himself, haggard, jumpy, biting
his lip. Daniel Webster said to him, “Well, how did you do at my task? Did you
prove the theorem?”

“Eh? No ... no, I haven’t proved it.”

“Then I can have whatever I ask for? Money? The Presidency?”

“What? Oh, that— of course. But listen! If we could just prove the following
two lemmas—"

— The Mathematical Magpie, Clifton Fadiman

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Discuss key concepts relating to prime numbers.
Understand Fermat’s theorem.

Understand Euler’s theorem.

Define Euler’s totient function.

Make a presentation on the topic of testing for primality.
Explain the Chinese remainder theorem.

L R R 2R N JER 2R 2

Define discrete logarithms.

A number of concepts from number theory are essential in the design of public-key
cryptographic algorithms. This chapter provides an overview of the concepts referred to
in other chapters. The reader familiar with these topics can safely skip this chapter. The
reader should also review Sections 4.1 through 4.3 before proceeding with this chapter.

As with Chapter 4, this chapter includes a number of examples, each of which is
highlighted in a shaded box.

8.1 PRIME NUMBERS'

A central concern of number theory is the study of prime numbers. Indeed, whole
books have been written on the subject (e.g., [CRANO1], [RIBE96]). In this section,
we provide an overview relevant to the concerns of this book.

!In this section, unless otherwise noted, we deal only with the nonnegative integers. The use of negative
integers would introduce no essential differences.

233
An integer p > 1 is a prime number if and only if its only divisors® are *1
and * p. Prime numbers play a critical role in number theory and in the techniques
discussed in this chapter. Table 8.1 shows the primes less than 2000. Note the way
the primes are distributed. In particular, note the number of primes in each range
of 100 numbers.
Any integer a > 1 can be factored in a unique way as

a=pi' X pP X X pif 8.1

where p; < p, < ... < p, are prime numbers and where each g; is a positive inte-
ger. This is known as the fundamental theorem of arithmetic; a proof can be found
in any text on number theory.

91 =7 X 13
3600 = 2% x 3% x 52
11011 = 7 X 112 x 13

It is useful for what follows to express this another way. If P is the set of all prime
numbers, then any positive integer a can be written uniquely in the following form:

— a
a= []p* whereeacha, =0
pPEP

The right-hand side is the product over all possible prime numbers p; for any par-
ticular value of a, most of the exponents a, will be 0.

The value of any given positive integer can be specified by simply listing all the
nonzero exponents in the foregoing formulation.

The integer 12 is represented by {a, = 2, a3 = 1}.
The integer 18 is represented by {a, = 1, a3 = 2}.

The integer 91 is represented by {a; = 1, a3 = 1}.

Multiplication of two numbers is equivalent to adding the corresponding ex-

ponents. Given a = H p, b = H p". Define k = ab. We know that the integer

PEP PEP
k can be expressed as the product of powers of primes: k = 1__[pke. It follows that
k, = a, + b,forall p € P. peEP

ZRecall from Chapter 4 that integer a is said to be a divisor of integer b if there is no remainder on
division. Equivalently, we say that a divides b.

14%4

Table 8.1 Primes Under 2000

2 101 211 307 401 503 601 701 809 907 1009 | 1103 | 1201 | 1301 | 1409 | 1511 | 1601 | 1709 | 1801 | 1901
3 103 223 311 409 509 607 709 811 911 1013 | 1109 | 1213 | 1303 | 1423 | 1523 | 1607 | 1721 | 1811 | 1907
5 107 227 313 419 521 613 719 821 919 1019 | 1117 | 1217 | 1307 | 1427 | 1531 | 1609 | 1723 | 1823 | 1913
7 109 229 317 421 523 617 727 823 929 1021 | 1123 | 1223 | 1319 | 1429 | 1543 | 1613 | 1733 | 1831 | 1931
11 113 233 331 431 541 619 733 827 937 1031 | 1129 | 1229 | 1321 | 1433 | 1549 | 1619 | 1741 | 1847 | 1933
13 127 239 337 433 547 631 739 829 941 1033 | 1151 | 1231 | 1327 | 1439 | 1553 | 1621 | 1747 | 1861 | 1949
17 131 241 347 439 557 641 743 839 947 1039 | 1153 | 1237 | 1361 | 1447 | 1559 | 1627 | 1753 | 1867 | 1951
19 137 251 349 443 563 643 751 853 953 1049 | 1163 | 1249 | 1367 | 1451 | 1567 | 1637 | 1759 | 1871 | 1973
23 139 257 353 449 569 647 757 857 967 1051 | 1171 | 1259 | 1373 | 1453 | 1571 | 1657 | 1777 | 1873 | 1979
29 149 263 359 457 571 653 761 859 971 1061 | 1181 | 1277 | 1381 | 1459 | 1579 | 1663 | 1783 | 1877 | 1987
31 151 269 367 461 577 659 769 863 977 1063 | 1187 | 1279 | 1399 | 1471 | 1583 | 1667 | 1787 | 1879 | 1993
37 157 271 373 463 587 661 773 877 983 1069 | 1193 | 1283 1481 | 1597 | 1669 | 1789 | 1889 | 1997
41 163 277 379 467 593 673 787 881 991 1087 1289 1483 1693 1999
43 167 281 383 479 599 677 797 883 997 1091 1291 1487 1697

47 173 283 389 487 683 887 1093 1297 1489 1699

53 179 293 397 491 691 1097 1493

59 181 499 1499

61 191

67 193

71 197

73 199

79

83

89

97

235

k=12 X 18 = (22 X 3) X (2 X 3%) =216
khb=24+1=3k=1+2=3
216 = 23 x 33 =8 x 27

What does it mean, in terms of the prime factors of a and b, to say that a divides b?
Any integer of the form p” can be divided only by an integer that is of a lesser
or equal power of the same prime number, p/ with j = n. Thus, we can say the
following.

Given

a= []p7b=T]p”

pEP pPEP

If a|b, then a, = b, for all p.

a =12;b = 36;12|36
12 =2>x3;36 =2> X 3
a =2 =b,

a; =1=2=bh,

Thus, the inequality a, =< b,, is satisfied for all prime numbers.

It is easy to determine the greatest common divisor® of two positive integers if
we express each integer as the product of primes.

300 = 22 x 3! x 52
18 = 2! x 32
ged(18,300) = 2! x 3! x 59 =6

The following relationship always holds:

If kK = gcd(a, b), then k, = min(a,, b,) for all p.

Determining the prime factors of a large number is no easy task, so the pre-
ceding relationship does not directly lead to a practical method of calculating the
greatest common divisor.

3Recall from Chapter 4 that the greatest common divisor of integers a and b, expressed (gcd a, b), is an
integer c that divides both a and b without remainder and that any divisor of a and b is a divisor of c.

236 CHAPTER 8 / MORE NUMBER THEORY

8.2 FERMAT’S AND EULER’S THEOREMS

Two theorems that play important roles in public-key cryptography are Fermat’s
theorem and Euler’s theorem.

Fermat’s Theorem®*

Fermat’s theorem states the following: If p is prime and a is a positive integer not
divisible by p, then

a’~! = 1(modp) 8.2)

Proof: Consider the set of positive integers less than p:{1,2, ... ,p — 1}
and multiply each element by a, modulo p, to get the set X = {a modp,
2amodp, ... ,(p — 1)a modp}. None of the elements of X is equal to zero because
p does not divide a. Furthermore, no two of the integers in X are equal. To see this,
assume that ja = ka(modp)), where 1 = j < k = p — 1. Because a is relatively
prime’ to p, we can eliminate a from both sides of the equation [see Equation (4.3)]
resulting in j = k(modp). This last equality is impossible, because j and k are both
positive integers less than p. Therefore, we know that the (p — 1) elements of X
are all positive integers with no two elements equal. We can conclude the X consists
of the set of integers {1,2, ... ,p — 1} in some order. Multiplying the numbers in
both sets (p and X) and taking the result mod p yields

aX2aX---X(p—1a=[1X2xX---X(p—1)](modp)
a (p — 1)! = (p — 1)! (modp)

We can cancel the (p — 1)! term because it is relatively prime to p [see Equation (4.5)].
This yields Equation (8.2), which completes the proof.

=7,p =19
77 = 49 = 11 (mod19)
7* = 121 = 7 (mod 19)
78 = 49 = 11 (mod19)
716 = 121 = 7 (mod 19)
=78 =79x72=7x11 =1 (mod19)

An alternative form of Fermat’s theorem is also useful: If p is prime and a is a
positive integer, then

a’ = a(modp) (8.3)

“This is sometimes referred to as Fermat’s little theorem.

SRecall from Chapter 4 that two numbers are relatively prime if they have no prime factors in common;
that is, their only common divisor is 1. This is equivalent to saying that two numbers are relatively prime
if their greatest common divisor is 1.

237

Note that the first form of the theorem [Equation (8.2)] requires that a be relatively
prime to p, but this form does not.

p=5a=3 a =3°=243 = 3(mod5) = a(modp)
p=5a=10 a =10° = 100000 = 10(mod5) = 0(mod5) = a(modp)

Before presenting Euler’s theorem, we need to introduce an important quantity in
number theory, referred to as Euler’s totient function, written ¢(n), and defined as
the number of positive integers less than # and relatively prime to #n. By convention,

o(1) = 1.

DETERMINE ¢(37) AND ¢(35).
Because 37 is prime, all of the positive integers from 1 through 36 are relatively
prime to 37 Thus ¢(37) = 36.

To determine ¢(35), we list all of the positive integers less than 35 that are rela-
tively prime to it:

1,2,3,4,6,8,9,11, 12,13, 16, 17, 18
19,22, 23,24, 26,27, 29, 31, 32, 33, 34

There are 24 numbers on the list, so ¢(35) = 24.

Table 8.2 lists the first 30 values of ¢(n). The value ¢(1) is without meaning
but is defined to have the value 1.
It should be clear that, for a prime number p,

op)=p -1
Now suppose that we have two prime numbers p and g with p # g. Then we can
show that, for n = pgq,

d(n) = d(pq) = d(p) X d(g) = (p — 1) X (¢ — 1)

To see that ¢(n) = ¢(p) X ¢(q), consider that the set of positive integers less that
nistheset{l,..., (pq — 1)}. The integers in this set that are not relatively prime to
n are the set {p, 2p, ..., (¢ — 1)p} and the set {q, 2¢q, ..., (p — 1)q}. Accordingly,

¢p(n) =g —-—1) -[(¢g—1) +(@-1)]
=pg—(p+q) +1
=pP-1DXx(@-1
= ¢(p) X ¢(q)

238

Some Values of Euler’s Totient Function ¢ ()

n b(n) n b(n) n b(n)
1 1 11 10 21 12
2 1 12 4 22 10
3 2 13 12 23 22
4 2 14 6 24 8
5 4 15 8 25 20
6 2 16 8 26 12
7 6 17 16 27 18
8 4 18 6 28 12
9 6 19 18 29 28
10 4 20 8 30 8

d21) =dB) X d(T) =B -1 X (T-1)=2%X6=12
where the 12 integers are {1,2,4,5,8,10,11,13,16,17,19,20}.

Euler’s theorem states that for every a and n that are relatively prime:
at® = 1(mod n) (8.4)

Equation (8.4) is true if n is prime, because in that case, ¢p(n) = (n — 1)
and Fermat’s theorem holds. However, it also holds for any integer n. Recall that
¢(n) is the number of positive integers less than » that are relatively prime to n.
Consider the set of such integers, labeled as

R = {x;, %, ..., Xym)
Thatis, each element x; of R is a unique positive integer less than n with ged(x;, n) = 1.
Now multiply each element by a, modulo n:
§ = {(ax; mod n), (ax,mod n), . . . , (axy,) mod n)}
The set S is a permutation® of R, by the following line of reasoning:
Because a is relatively prime to n and x; is relatively prime to n, ax; must also

be relatively prime to n. Thus, all the members of § are integers that are less
than n and that are relatively prime to #.

There are no duplicates in §. Refer to Equation (4.5). If ax;modn
= ax; mod n, then x; = x;.

Therefore,
é(n) é(n)
11 (ax; mod n) x;
=1 =1

() ()

[ax = []x (mod n)
=T i=1

®Recall from Chapter 2 that a permutation of a finite set of elements S is an ordered sequence of all the

elements of S, with each element appearing exactly once.

8.3 / TESTING FOR PRIMALITY 239

() ¢(n)
a®® x| TTx | = [1x (modn)
= =1
a®™ = 1(mod n)

which completes the proof. This is the same line of reasoning applied to the proof
of Fermat’s theorem.

a=3;n=10;¢(10) = 4a*"™ = 3* =81 = 1(mod 10) = 1(mod n)
a=2%n=11;¢11) = 10 a®™ = 2'° = 1024 = 1 (mod 11) = 1 (mod n)

As is the case for Fermat’s theorem, an alternative form of the theorem is also
useful:

a®™*! = g(mod n) 8.5

Again, similar to the case with Fermat’s theorem, the first form of Euler’s theorem
[Equation (8.4)] requires that a be relatively prime to n, but this form does not.

8.3 TESTING FOR PRIMALITY

For many cryptographic algorithms, it is necessary to select one or more very large
prime numbers at random. Thus, we are faced with the task of determining whether
a given large number is prime. There is no simple yet efficient means of accomplish-
ing this task.

In this section, we present one attractive and popular algorithm. You may be
surprised to learn that this algorithm yields a number that is not necessarily a prime.
However, the algorithm can yield a number that is almost certainly a prime. This
will be explained presently. We also make reference to a deterministic algorithm
for finding primes. The section closes with a discussion concerning the distribution
of primes.

Miller-Rabin Algorithm’

The algorithm due to Miller and Rabin [MILL75, RABI80] is typically used to test
a large number for primality. Before explaining the algorithm, we need some back-
ground. First, any positive odd integer n = 3 can be expressed as

n—1=2g withk > 0,qodd

To see this, note that n — 1 is an even integer. Then, divide (n — 1) by 2 until the
result is an odd number g, for a total of k divisions. If n is expressed as a binary
number, then the result is achieved by shifting the number to the right until the

7 Also referred to in the literature as the Rabin-Miller algorithm, or the Rabin-Miller test, or the Miller-
Rabin test.

240

rightmost digit is a 1, for a total of k shifts. We now develop two properties of prime
numbers that we will need.

The first property is stated as follows: If p is
prime and a is a positive integer less than p, then > mod p = 1 if and only if either
amodp = loramodp = —1 mod p = p — 1. By the rules of modular arithme-
tic (a mod p) (a mod p) = a* mod p. Thus, if either amodp = loramod p = —1,
thena? mod p = 1. Conversely, if > mod p = 1, then (amod p)> = 1, which is true
onlyforamodp = loramodp = —1.

The second property is stated as follows: Let p be a prime number greater
than 2. We can then write p — 1 = 2%g with k > 0, g odd. Let a be any integer in
the range 1 < a < p — 1. Then one of the two following conditions is true.

a? is congruent to 1 modulo p. That is, a? modp = 1, or equivalently,
a? = 1(mod p).

One of the numbers a9, a*?, a*,. ,a2k 7 is congruent to —1 modulo P
That is, there is some number j in the range (1 = j = k) such that a?
modp = —1mod p = p — 1 or equivalently, > 4= —1(mod p).

Fermat’s theorem [Equation (8.2)] states that o™ = l(mod n) if n is
prime. We have p — 1 = 2%q. Thus, we know that a”~ 1mod p= a*9 mod p =1
Thus, if we look at the sequence of numbers

a?mod p, a** mod p,a** modp, ..., a* ""mod D, a¥a mod p (8.6)
we know that the last number in the list has value 1. Further, each number in the list
is the square of the previous number. Therefore, one of the following possibilities
must be true.

The first number on the list, and therefore all subsequent numbers on the list,
equals 1.

Some number on the list does not equal 1, but its square mod p does equal 1.
By virtue of the first property of prime numbers defined above, we know that
the only number that satisfies this condition is p — 1. So, in this case, the list
contains an element equal to p — 1.

This completes the proof.

These considerations lead to the conclusion that,
if n is prime, then either the first element in the list of residues, or remainders,
(a%,a%, ..., a> a, g% 7) modulo n equals 1; or some element in the list equals
(n— 1); otherw1se n is composite (i.e., not a prime). On the other hand, if the
condition is met, that does not necessarily mean that z is prime. For example, if
n = 2047 = 23 X 89, thenn — 1 = 2 X 1023. We compute 2!°> mod 2047 = 1, s0
that 2047 meets the condition but is not prime.

We can use the preceding property to devise a test for primality. The proce-
dure TEST takes a candidate integer » as input and returns the result composite
if n is definitely not a prime, and the result inconclusive if # may or may not
be a prime.

241

TEST (n)

1. Find integers k, g, with k> 0, g odd, so that
(n— 1= 2%q);

Select a random integer a, 1 <a<n-—1;

if a%mod n = 1 then return("inconclusive") ;

for j=0 to k— 1 do

if azquod n=n—1 then return("inconclusive") ;

a Ul B W DN

. return("composite") ;

Let us apply the test to the prime number n = 29. We have (n — 1) =28 =
2%(7) = 2%q. First, let us try a = 10. We compute 10’ mod 29 = 17, which
is neither 1nor 28, so we continue the test. The next calculation finds that
(107)> mod 29 = 28, and the test returns inconclusive (i.e.,29 may be prime).
Let’s try again with @ = 2. We have the following calculations: 2’ mod 29 = 12;
24 mod 29 = 28; and the test again returns inconclusive. If we perform the
test for all integers a in the range 1 through 28, we get the same inconclusive
result, which is compatible with n being a prime number.

Now let us apply the test to the composite number n = 13 X 17 = 221.
Then (n — 1) = 220 = 2%(55) = 2%q. Let us try a = 5. Then we have 5°° mod
221 = 112,whichis neither 1 nor 220 (5%)> mod 221 = 168.Because we have used
allvaluesof j (i.e.,j = Oand j = 1)inline 4 of the TEST algorithm, the test returns
composite,indicating that 221 is definitely a composite number. But suppose we
had selected a = 21. Then we have 21°° mod 221 = 200; (21°°)?> mod 221 = 220;
and the test returns inconclusive, indicating that 221 may be prime. In fact,
of the 218 integers from 2 through 219, four of these will return an inconclusive
result, namely 21, 47, 174, and 200.

How can we use the Miller-Rabin
algorithm to determine with a high degree of confidence whether or not an integer
is prime? It can be shown [KNUT98] that given an odd number # that is not prime
and a randomly chosen integer, a with 1 < a < n — 1, the probability that TEST
will return inconclusive (i.e., fail to detect that n is not prime) is less than 1/4.
Thus, if ¢ different values of a are chosen, the probability that all of them will pass
TEST (return inconclusive) for n is less than (1/4)". For example, for r = 10, the
probability that a nonprime number will pass all ten tests is less than 107°. Thus,
for a sufficiently large value of ¢, we can be confident that n is prime if Miller’s test
always returns inconclusive.

This gives us a basis for determining whether an odd integer »n is prime
with a reasonable degree of confidence. The procedure is as follows: Repeatedly
invoke TEST (n) using randomly chosen values for a. If, at any point, TEST re-
turns composite, then n is determined to be nonprime. If TEST continues to
return inconclusive for ¢ tests, then for a sufficiently large value of ¢, assume
that n is prime.

242

Prior to 2002, there was no known method of efficiently proving the primality of very
large numbers. All of the algorithms in use, including the most popular (Miller-Rabin),
produced a probabilistic result. In 2002 (announced in 2002, published in 2004),
Agrawal, Kayal, and Saxena [AGRAO04] developed a relatively simple deterministic
algorithm that efficiently determines whether a given large number is a prime. The algo-
rithm, known as the AKS algorithm, does not appear to be as efficient as the Miller-
Rabin algorithm. Thus far, it has not supplanted this older, probabilistic technique.

It is worth noting how many numbers are likely to be rejected before a prime num-
ber is found using the Miller-Rabin test, or any other test for primality. A result
from number theory, known as the prime number theorem, states that the primes
near n are spaced on the average one every In (n) integers. Thus, on average, one
would have to test on the order of In(n) integers before a prime is found. Because
all even integers can be immediately rejected, the correct figure is 0.5 In(n). For
example, if a prime on the order of magnitude of 2°* were sought, then about 0.5
In(2%%) = 69 trials would be needed to find a prime. However, this figure is just an
average. In some places along the number line, primes are closely packed, and in
other places there are large gaps.

The two consecutive odd integers 1,000,000,000,061 and 1,000,000,000,063 are
both prime. On the other hand, 1001! + 2, 1001! + 3,...,1001! + 1000, 1001! +
1001 is a sequence of 1000 consecutive composite integers.

One of the most useful results of number theory is the Chinese remainder theorem
(CRT).3 In essence, the CRT says it is possible to reconstruct integers in a certain
range from their residues modulo a set of pairwise relatively prime moduli.

The 10 integers in Z, that is the integers 0 through 9, can be reconstructed from
their two residues modulo 2 and 5 (the relatively prime factors of 10). Say the
known residues of a decimal digit x are , = 0 and rs = 3; that is, x mod 2 = 0
and x mod 5 = 3.Therefore, x is an even integer in Z;, whose remainder, on divi-
sion by 5, is 3. The unique solution is x = 8.

The CRT can be stated in several ways. We present here a formulation that is most
useful from the point of view of this text. An alternative formulation is explored in
Problem 8.17. Let

i=1

8The CRT is so called because it is believed to have been discovered by the Chinese mathematician

Sun-Tsu in around 100 A.D.

243

where the m; are pairwise relatively prime; that is, ged(m;, mj)) = 1for1 = i,j = k,
and i # j. We can represent any integer A in Z;, by a k-tuple whose elements are
in Z,,, using the following correspondence:

Ao (a,a,. .., a4 8.7

where A € Zy,a, € Z,,, and a; = A mod m; for 1 = i = k. The CRT makes two
assertions.

The mapping of Equation (8.7) is a one-to-one correspondence (called a
bijection) between Z), and the Cartesian product Z,, X Z,,, X ... X Z,,.
That is, for every integer A such that 0 = A < M, there is a unique k-tuple
(aj, ay, . . ., a;) with 0 = a; < m; that represents it, and for every such k-tuple
(aj, ay, . . ., a;), there is a unique integer A in Z ;.

Operations performed on the elements of Z,, can be equivalently performed
on the corresponding k-tuples by performing the operation independently in
each coordinate position in the appropriate system.

Let us demonstrate the first assertion. The transformation from A to
(ar, ay, ..., a), is obviously unique; that is, each g; is uniquely calculated as
a; = A mod m;. Computing A from (ay, ay, ..., a;) can be done as follows. Let
M; = M/m;for1 =i = k. Note that M; = my X my X ... X m_; X my; X ...
X my, sothat M; = 0(mod my) for all j # i. Then let

¢ =M; X (Mi'modm;) forl=i=<k 8.8)

By the definition of M, it is relatively prime to m; and therefore has a unique mul-
tiplicative inverse mod m;. So Equation (8.8) is well defined and produces a unique
value c;. We can now compute

A

k
Zaici (mod M) (8.9)

To show that the value of A produced by Equation (8.9) is correct, we must
show that ; = A mod m; for 1 =i =< k. Note that ¢; = M; = 0(mod m;) if j # i,
and that ¢; = 1(mod my;). It follows that ; = A mod m;.

The second assertion of the CRT, concerning arithmetic operations, follows
from the rules for modular arithmetic. That is, the second assertion can be stated as
follows: If

Ao (a,ay,...,a)
B < (b, by,...,by)
then
(A + Bymod M < ((a; + by) mod my, ..., (a; + by) mod my)
(A - Bymod M < ((a; — by) mod my, . .., (a; — by) mod my)
(A X Bymod M < ((a; X by) mod my, ..., (a; X by) mod ny)

One of the useful features of the Chinese remainder theorem is that it provides
a way to manipulate (potentially very large) numbers mod M in terms of tuples of

244

smaller numbers. This can be useful when M is 150 digits or more. However, note
that it is necessary to know beforehand the factorization of M.

To represent 973 mod 1813 as a pair of numbers mod 37 and 49, define

my = 37
my = 49
M = 1813
A =973

We also have M; = 49 and M, = 37. Using the extended Euclidean algorithm,
we compute M;' = 34 mod m; and M;' = 4 mod m,. (Note that we only need
to compute each M; and each M;! once.) Taking residues modulo 37 and
49, our representation of 973 is (11, 42), because 973 mod 37 = 11 and 973
mod 49 = 42.

Now suppose we want to add 678 to 973. What do we do to (11, 42)? First
we compute (678) <> (678 mod 37, 678 mod 49) = (12,41). Then we add the
tuples element-wise and reduce (11 + 12 mod 37, 42 + 41 mod 49) = (23, 34).
To verify that this has the correct effect, we compute

(23, 34) > alMlel + azMzMgl mod M
= [(23)(49)(34) + (34)(37)(4)] mod 1813
= 43350 mod 1813
= 1651
and check that it is equal to (973 + 678) mod 1813 = 1651. Remember that in
the above derivation, M; ! is the multiplicative inverse of M; modulo 7, modulo
M5 is the multiplicative inverse of M, modulo 1.

Suppose we want to multiply 1651 (mod 1813) by 73. We multiply (23, 34)
by 73 and reduce to get (23 X 73 mod 37, 34 X 73 mod 49) = (14, 32).Itis easily
verified that

(14, 32) < [(14)(49)(34) + (32)(37)(4)] mod 1813
= 865
= 1651 X 73 mod 1813

Discrete logarithms are fundamental to a number of public-key algorithms,
including Diffie-Hellman key exchange and the digital signature algorithm
(DSA). This section provides a brief overview of discrete logarithms. For the
interested reader, more detailed developments of this topic can be found in
[ORE67] and [LEVE90].

245

Recall from Euler’s theorem [Equation (8.4)] that, for every a and n that are rela-
tively prime,

a®™ =1 (mod n)

where ¢(n), Euler’s totient function, is the number of positive integers less than »
and relatively prime to n. Now consider the more general expression:

a™ =1 (mod n) (8.10)

If a and n are relatively prime, then there is at least one integer m that satisfies
Equation (8.10), namely, M = ¢(n). The least positive exponent m for which
Equation (8.10) holds is referred to in several ways:

The order of a (mod n)

The exponent to which a belongs (mod n)

The length of the period generated by a

To see this last point, consider the powers of 7 modulo 19:

7= 7 (mod 19)
TP=49=2x19 + 11 = 11 (mod 19)
7P =343 =18 X 19 + 1 = 1(mod19)
74 =2401 = 126 X 19 +7 = 7 (mod 19)
75 = 16807 = 884 X 19 + 11 = 11 (mod 19)

There is no point in continuing because the sequence is repeating. This can be

proven by noting that 7> = 1(mod 19), and therefore, 7°*/ = 737 = 7/(mod 19),

and hence, any two powers of 7 whose exponents differ by 3 (or a multiple of 3)

are congruent to each other (mod 19). In other words, the sequence is period-

ic, and the length of the period is the smallest positive exponent m such that
" = 1(mod 19).

Table 8.3 shows all the powers of a, modulo 19 for all positive a < 19. The
length of the sequence for each base value is indicated by shading. Note the
following:

All sequences end in 1. This is consistent with the reasoning of the preceding
few paragraphs.

The length of a sequence divides ¢(19) = 18. That is, an integral number of
sequences occur in each row of the table.

Some of the sequences are of length 18. In this case, it is said that the base
integer a generates (via powers) the set of nonzero integers modulo 19. Each
such integer is called a primitive root of the modulus 19.

246

Powers of Integers, Modulo 19

a al a3 a4 a5 a6 a7 a8 a9 alO all a12 al3 a14 alS al6 a17 a18
(1] 1 1 1 1 11 1 1 11 11
2 4 8 16 13 7 14 9 18 17 15 11 3 6 12 5 10 1
3 9 8 5 15 7 6 18 16 10 11 14 4 12 17 13 1
4 16 7 17 11 6 5 1]4 16 7 9 17 11 6 5 1
5 6 1l 17 9 7 16 4 1|5 6 11 17 9 7 16 4 I
6 17 7 4 5 11 _9 16 1|6 17 7 4 5 11 9 16 1
7 11 1]7 1 1 7 1 1 7 1w 1 7 1 1 no1
8 18 11 12 1 7 18 11 12 1 8 7 18 11 12 1
9 5 7 6 16 11 17 1]9 5 7 6 16 11 4 17 1
0 5 12 6 3 11 15 17 18 9 14 7 13 16 8 4 2 1
11 i1 [n 7 1 1 7 1 1 7 1 1 7 1 11 7 1
12 11 18 7 8 1|12 11 18 7 8 1 12 11 18 8 1
13 17 12 4 14 11 10 16 18 6 2 7 15 5 8 9 3 1
4 6 8 17 10 7 3 4 18 5 13 11 2 9 12 16 15 1
15 16 12 9 2 11 13 5 18 4 3 7 10 17 8 6 14 1
6 9 115 4 7 17 6 116 1 s 4 7 17 6 1
17 4 1116 6 7 5 9 1|17 4 11 16 6 7 5 9 1
18 1 [18 1 18 1 18 1 18 1 18 1 18 1 18 18 1

More generally, we can say that the highest possible exponent to which a num-
ber can belong (mod n) is ¢(n). If a number is of this order, it is referred to as a
primitive root of n. The importance of this notion is that if a is a primitive root of n,
then its powers

a,a, ..., a%"

are distinct (mod #) and are all relatively prime to n. In particular, for a prime num-
ber p, if a is a primitive root of p, then

2

a,a’,...,a""}

are distinct (mod p). For the prime number 19, its primitive roots are 2, 3, 10, 13, 14,
and 15.

Not all integers have primitive roots. In fact, the only integers with primitive
roots are those of the form 2, 4, p*, and 2p®, where p is any odd prime and « is a
positive integer. The proof is not simple but can be found in many number theory
books, including [ORE76].

With ordinary positive real numbers, the logarithm function is the inverse of expo-
nentiation. An analogous function exists for modular arithmetic.

Let us briefly review the properties of ordinary logarithms. The logarithm of a
number is defined to be the power to which some positive base (except 1) must be
raised in order to equal the number. That is, for base x and for a value y,

247

The properties of logarithms include

log (1) =0
log.(x) =1
log,(yz) = log,(y) + log,(z) (8.11)
log, (y") = r X log(y) (8.12)

Consider a primitive root a for some prime number p (the argument can
be developed for nonprimes as well). Then we know that the powers of a from 1
through (p — 1) produce each integer from 1 through (p — 1) exactly once. We also
know that any integer b satisfies

b = r (mod p) for some r, where 0 = r = (p — 1)

by the definition of modular arithmetic. It follows that for any integer b and a primi-
tive root a of prime number p, we can find a unique exponent i such that

b = da(mod p) where0 =i = (p — 1)

This exponent i is referred to as the discrete logarithm of the number b for the base
a (mod p). We denote this value as dloga,p(b).9
Note the following:

dlog, (1) = 0 because a®modp = 1modp =1 (8.13)
a (8.149)

dlog,,(a) = 1 because a' mod p

Here is an example using a nonprime modulus,n = 9. Here ¢(n) = 6 anda = 2
is a primitive root. We compute the various powers of a and find

=1 2*=7(mod9)

2l=2 2°=5(mod9)

22=4 2°=1(mod9)

=38
This gives us the following table of the numbers with given discrete logarithms
(mod 9) for the root a = 2:

Logarithm O 1 2 3 4 5
Number 1 2 4 8 7 5

To make it easy to obtain the discrete logarithms of a given number, we rearrange
the table:

Number

1 2 4 5 7 8
Logarithm O 1 2 5 4 3

9Many texts refer to the discrete logarithm as the index. There is no generally agreed notation for this
concept, much less an agreed name.

248

Now consider

x = a%%®modp y = a¥°%0) mod p
xy = adl()gn,p(XY) modp

Using the rules of modular multiplication,
xy mod p = [(x mod p)(y mod p)]mod p
a0 mod p = [(a¥°%r™ mod p)(a¥%/") mod p)] mod p
= (adloga.p(XHdloga,p(y)) mod p

But now consider Euler’s theorem, which states that, for every a and n that are
relatively prime,

a®™ = 1 (mod n)

Any positive integer z can be expressed in the form z = g + ké(n), with
0 = g < ¢(n). Therefore, by Euler’s theorem,

a* = a’(mod n) if z = g mod ¢(n)
Applying this to the foregoing equality, we have
dlog,, ,(xy) = [dlog, ,(x) + dlog, ,(y)](modé(p))

and generalizing,

dlog,, ,(y") = [r X dlog,, ,(y)](mod ¢(p))

This demonstrates the analogy between true logarithms and discrete logarithms.
Keep in mind that unique discrete logarithms mod m to some base a exist only
if a is a primitive root of m.
Table 8.4, which is directly derived from Table 8.3, shows the sets of discrete
logarithms that can be defined for modulus 19.

Consider the equation
y = g'modp

Given g, x, and p, it is a straightforward matter to calculate y. At the worst, we
must perform x repeated multiplications, and algorithms exist for achieving greater
efficiency (see Chapter 9).

However, given y, g, and p, it is, in general, very difficult to calculate x (take
the discrete logarithm). The difficulty seems to be on the same order of magnitude
as that of factoring primes required for RSA. At the time of this writing, the asymp-
totically fastest known algorithm for taking discrete logarithms modulo a prime
number is on the order of [BETH91]:

((np)"(In(In p))**))

which is not feasible for large primes.

8.6 / RECOMMENDED READING 249

Table 8.4 Tables of Discrete Logarithms, Modulo 19
(a) Discrete logarithms to the base 2, modulo 19

a 1 2 3 4 5 6 7 8 9 (10 (11 [12 [13 | 14 | 15 | 16 | 17 | 18
logyio(a) | 18 | 1 [13 | 2 [16 | 14 | 6 3 8 (17 [12 [15 | 5 7 111 | 4 [10] 9

(b) Discrete logarithms to the base 3, modulo 19

a 123|456 |7 |89]10f[11|12|13[14]|15]|16]|17 18
logswa| 18] 7] 1 [1alas]e]|3]2|ul2lis][17|B]s5[w0]6]9

(c) Discrete logarithms to the base 10, modulo 19

a 1234567891011 |12[13[14]|15][16]17]18
logioww@ |18 1751624 [2]1s5[w]1]e|3][n]uu|7][1a]s8]o9

(d) Discrete logarithms to the base 13, modulo 19

a 1234|5678 |9 1011]|12|13[14[15]|16]|17 |18
logiso@)| 18 [11 [17| 4 [1afwo|n2|15[16| 7631]5]|B3]s]2]9

(e) Discrete logarithms to the base 14, modulo 19

a 1 2 3 4 5 6 7 8 9 |10 | 11 |12 [13 | 14 | 15| 16 | 17 | 18
logiai9(a) | 18 | 13 | 7 8§ |10 | 2 6 3 (14| 5 |12 |15 (11| 1 |17 |16 | 4 9

(f) Discrete logarithms to the base 15, modulo 19

a 1 2 3 4 5 6 7 8 9 |10 | 11 |12 [13 | 14 | 15 | 16 | 17 | 18
logisqoa) [18 | S |11 |10 | 8 |16 | 12 | 15| 4 [13 | 6 3 7117 | 1 2 | 14] 9

8.6 RECOMMENDED READING

There are many basic texts on the subject of number theory that provide far more detail than
most readers of this book will desire. An elementary but nevertheless useful short introduc-
tion is [OREG67]. For the reader interested in a more in-depth treatment, two excellent text-
books on the subject are [KUMA98] and [ROSE10]. [LEVEY0] is a readable and detailed
account as well. All of these books include problems with solutions, enhancing their value
for self-study.

For readers willing to commit the time, perhaps the best way to get a solid grasp of
the fundamentals of number theory is to work their way through [BURN97], which consists
solely of a series of exercises with solutions that lead the student step-by-step through the
concepts of number theory; working through all of the exercises is equivalent to completing
an undergraduate course in number theory.

250 CHAPTER 8 / MORE NUMBER THEORY

BURNY97 Burn, R. A Pathway to Number Theory. Cambridge, England: Cambridge
University Press, 1997

KUMAY98 Kumanduri, R.,and Romero, C. Number Theory with Computer Applications.
Upper Saddle River, NJ: Prentice Hall, 1998.

LEVE90 Leveque, W. Elementary Theory of Numbers. New York: Dover, 1990.

OREG67 Ore, O. Invitation to Number Theory. Washington, D.C.: The Mathematical
Association of America, 1967

ROSE10 Rosen, K. Elementary Number Theory and its Applications. Reading, MA:
Addison-Wesley, 2010.

8.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
bijection Euler’s theorem order
composite number Euler’s totient function prime number
Chinese remainder theorem Fermat’s theorem primitive root
discrete logarithm index

Review Questions

8.1 Whatis a prime number?

8.2 What is the meaning of the expression a divides b?

8.3 What is Euler’s totient function?

8.4 The Miller-Rabin test can determine if a number is not prime but cannot determine if
a number is prime. How can such an algorithm be used to test for primality?

8.5 What is a primitive root of a number?

8.6 What is the difference between an index and a discrete logarithm?

Problems

8.1 The purpose of this problem is to determine how many prime numbers there
are. Suppose there are a total of n prime numbers, and we list these in order:
pL=2<p=3<ps=5< ... < Pn-

a. Define X =1 + p;p,...p, Thatis, X is equal to one plus the product of all the
primes. Can we find a prlme number P, that divides X?

b. What can you say about m?

c. Deduce that the total number of primes cannot be finite.

d. ShowthatP, . =1+ pipr... Dy

8.2 The purpose of this problem is to demonstrate that the probability that two random
numbers are relatively prime is about 0.6.
a. Let P = Pr[ged(a, b) = 1]. Show that P = Pr[ged(a, b) = d] = P/d>. Hint:

Consider the quantity ged id)

251

The sum of the result of part (a) over all possible values of d is 1. That is

>**'Pr(ged(a, b) = d] = 12. Use this equality to determine the value of P. Hint:

Use the identity >, — = %
=i

Why is ged(n,n + 1) = 1 for two consecutive integers n and n + 1?

Using Fermat’s theorem, find 3! mod 11.

Use Fermat’s theorem to find a number a between 0 and 72 with a congruent to 9794
modulo 73.

Use Fermat’s theorem to find a number x between 0 and 28 with x* congruent to 6
modulo 29. (You should not need to use any brute-force searching.)

Use Euler’s theorem to find a number a between 0 and 9 such that a is congruent
to 7;338 modulo 10. (Note: This is the same as the last digit of the decimal expansion
of 7777

Use Euler’s theorem to find a number x between 0 and 28 with x% congruent to 6
modulo 35. (You should not need to use any brute-force searching.)

Notice in Table 8.2 that ¢(n) is even for n > 2. This is true for all n > 2. Give a con-
cise argument why this is so.

Prove the following: If p is prime, then ¢(p') = p' — p'~!. Hint: What numbers have a
factor in common with p*?

It can be shown (see any book on number theory) that if gcd(m,n) = 1 then
¢(mn) = $(m)d(n). Using this property, the property developed in the preceding
problem, and the property that ¢(p) = p — 1 for p prime, it is straightforward to
determine the value of ¢(n) for any n. Determine the following:

B(41) »(27) $(231) B(440)

It can also be shown that for arbitrary positive integer a, ¢(a) is given by
t
dla) = _Hl[Pf"’l(Pi - 1]

where a is given by Equation (8.1), namely: a = P{* P%>... P{*. Demonstrate this
result.

Consider the function: f(n) = number of elements in the set
{a:0 = a < n and ged(a, n) = 1}. What is this function?
Although ancient Chinese mathematicians did good work coming up with their re-
mainder theorem, they did not always get it right. They had a test for primality. The
test said that » is prime if and only if » divides (2" — 2).
Give an example that satisfies the condition using an odd prime.
The condition is obviously true for n = 2. Prove that the condition is true if 7 is an
odd prime (proving the if condition)
Give an example of an odd # that is not prime and that does not satisfy the condi-
tion. You can do this with nonprime numbers up to a very large value. This misled
the Chinese mathematicians into thinking that if the condition is true then 7 is
prime.
Unfortunately, the ancient Chinese never tried n = 341, which is nonprime
(341 = 11 X 31), yet 341 divides 2°*' — 2 without remainder. Demonstrate that
2341 =2 gmod 341) (disproving the only if condition). Hint: It is not necessary to
calculate 2**!; play around with the congruences instead.
Show that, if n is an odd composite integer, then the Miller-Rabin test will return
inconclusive fora = landa = (n — 1).
If n is composite and passes the Miller-Rabin test for the base a, then n is called

a strong pseudoprime to the base a. Show that 2047 is a strong pseudoprime to the
base 2.

252

A common formulation of the Chinese remainder theorem (CRT) is as follows: Let

my, . .., my be integers that are pairwise relatively prime for 1 < i,j < k,and i # .
Define M to be the product of all the m;'s. Let ay, . . ., a; be integers. Then the set of
congruences:

= al(mod ml)

ay(mod my,)

x = aqi(mod ny)

has a unique solution modulo M. Show that the theorem stated in this form is true.
The example used by Sun-Tsu to illustrate the CRT was

x = 2 (mod 3); x = 3 (mod 5); x = 2 (mod 7)

Solve for x.

Six professors begin courses on Monday, Tuesday, Wednesday, Thursday, Friday,
and Saturday, respectively, and announce their intentions of lecturing at intervals of
2,3,4,1, 6, and 5 days, respectively. The regulations of the university forbid Sunday
lectures (so that a Sunday lecture must be omitted). When first will all six professors
find themselves compelled to omit a lecture? Hint: Use the CRT.
Find all primitive roots of 25.
Given 2 as a primitive root of 29, construct a table of discrete logarithms, and use it to
solve the following congruences.

17x* = 10 (mod 29)

x* — 4x — 16 = 0 (mod 29)

x’ = 17 (mod 29)

Write a computer program that implements fast exponentiation (successive squaring)
modulo #.

Write a computer program that implements the Miller-Rabin algorithm for a user-
specified n. The program should allow the user two choices: (1) specify a possible
witness a to test using the Witness procedure or (2) specify a number s of random
witnesses for the Miller-Rabin test to check.

CHAPTER

PUBLIC-KEY CRYPTOGRAPHY
AND RSA

9.1 Principles of Public-Key Cryptosystems

Public-Key Cryptosystems

Applications for Public-Key Cryptosystems
Requirements for Public-Key Cryptography
Public-Key Cryptanalysis

9.2 The RSA Algorithm

Description of the Algorithm
Computational Aspects
The Security of RSA

9.3 Recommended Reading
9.4 Key Terms, Review Questions, and Problems

Appendix 9A The Complexity of Algorithms

253

254

Every Egyptian received two names, which were known respectively as the true
name and the good name, or the great name and the little name; and while the good
or little name was made public, the true or great name appears to have been care-
fully concealed.

— The Golden Bough, Sir James George Frazer

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

Present an overview of the basic principles of public-key cryptosystems.
Explain the two distinct uses of public-key cryptosystems.

List and explain the requirements for a public-key cryptosystem.
Present an overview of the RSA algorithm.

Understand the timing attack.

Summarize the relevant issues related to the complexity of algorithms.

The development of public-key cryptography is the greatest and perhaps the
only true revolution in the entire history of cryptography. From its earliest begin-
nings to modern times, virtually all cryptographic systems have been based on
the elementary tools of substitution and permutation. After millennia of working
with algorithms that could be calculated by hand, a major advance in symmetric
cryptography occurred with the development of the rotor encryption/decryption
machine. The electromechanical rotor enabled the development of fiendishly com-
plex cipher systems. With the availability of computers, even more complex systems
were devised, the most prominent of which was the Lucifer effort at IBM that culmi-
nated in the Data Encryption Standard (DES). But both rotor machines and DES,
although representing significant advances, still relied on the bread-and-butter tools
of substitution and permutation.

Public-key cryptography provides a radical departure from all that has gone
before. For one thing, public-key algorithms are based on mathematical functions
rather than on substitution and permutation. More important, public-key cryptog-
raphy is asymmetric, involving the use of two separate keys, in contrast to sym-
metric encryption, which uses only one key. The use of two keys has profound
consequences in the areas of confidentiality, key distribution, and authentication,
as we shall see.

Before proceeding, we should mention several common misconceptions con-
cerning public-key encryption. One such misconception is that public-key encryp-
tion is more secure from cryptanalysis than is symmetric encryption. In fact, the
security of any encryption scheme depends on the length of the key and the com-
putational work involved in breaking a cipher. There is nothing in principle about

255

either symmetric or public-key encryption that makes one superior to another from
the point of view of resisting cryptanalysis.

A second misconception is that public-key encryption is a general-purpose
technique that has made symmetric encryption obsolete. On the contrary, because
of the computational overhead of current public-key encryption schemes, there
seems no foreseeable likelihood that symmetric encryption will be abandoned. As
one of the inventors of public-key encryption has put it [DIFF88], “the restriction
of public-key cryptography to key management and signature applications is almost
universally accepted.”

Finally, there is a feeling that key distribution is trivial when using public-
key encryption, compared to the rather cumbersome handshaking involved with
key distribution centers for symmetric encryption. In fact, some form of protocol
is needed, generally involving a central agent, and the procedures involved are not
simpler nor any more efficient than those required for symmetric encryption (e.g.,
see analysis in [NEED78]).

This chapter and the next provide an overview of public-key cryptography.
First, we look at its conceptual framework. Interestingly, the concept for this
technique was developed and published before it was shown to be practical to
adopt it. Next, we examine the RSA algorithm, which is the most important en-
cryption/decryption algorithm that has been shown to be feasible for public-key
encryption. Other important public-key cryptographic algorithms are covered in
Chapter 10.

Much of the theory of public-key cryptosystems is based on number theory.
If one is prepared to accept the results given in this chapter, an understanding of
number theory is not strictly necessary. However, to gain a full appreciation of
public-key algorithms, some understanding of number theory is required. Chapter 8
provides the necessary background in number theory.

Table 9.1 defines some key terms.

Terminology Related to Asymmetric Encryption

Asymmetric Keys

Two related keys, a public key and a private key, that are used to perform complementary operations, such as
encryption and decryption or signature generation and signature verification.

Public Key Certificate

A digital document issued and digitally signed by the private key of a Certification Authority that binds the
name of a subscriber to a public key. The certificate indicates that the subscriber identified in the certificate
has sole control and access to the corresponding private key.

Public Key (Asymmetric) Cryptographic Algorithm

A cryptographic algorithm that uses two related keys, a public key and a private key. The two keys have the
property that deriving the private key from the public key is computationally infeasible.

Public Key Infrastructure (PKI)

A set of policies, processes, server platforms, software and workstations used for the purpose of administer-
ing certificates and public-private key pairs, including the ability to issue, maintain, and revoke public key
certificates.

Source: Glossary of Key Information Security Terms, NIST IR 7298 [KISS06].

256

CHAPTER 9 / PUBLIC-KEY CRYPTOGRAPHY AND RSA

9.1 PRINCIPLES OF PUBLIC-KEY CRYPTOSYSTEMS

The concept of public-key cryptography evolved from an attempt to attack two of
the most difficult problems associated with symmetric encryption. The first problem
is that of key distribution, which is examined in some detail in Chapter 14.

As Chapter 14 discusses, key distribution under symmetric encryption requires
either (1) that two communicants already share a key, which somehow has been dis-
tributed to them; or (2) the use of a key distribution center. Whitfield Diffie, one
of the discoverers of public-key encryption (along with Martin Hellman, both at
Stanford University at the time), reasoned that this second requirement negated
the very essence of cryptography: the ability to maintain total secrecy over your
own communication. As Diffie put it [DIFF88], “what good would it do after all to
develop impenetrable cryptosystems, if their users were forced to share their keys
with a KDC that could be compromised by either burglary or subpoena?”

The second problem that Diffie pondered, and one that was apparently
unrelated to the first, was that of digital signatures. If the use of cryptography
was to become widespread, not just in military situations but for commercial and
private purposes, then electronic messages and documents would need the equiv-
alent of signatures used in paper documents. That is, could a method be devised
that would stipulate, to the satisfaction of all parties, that a digital message had
been sent by a particular person? This is a somewhat broader requirement than
that of authentication, and its characteristics and ramifications are explored in
Chapter 13.

Diffie and Hellman achieved an astounding breakthrough in 1976
[DIFF76 a, b] by coming up with a method that addressed both problems and was
radically different from all previous approaches to cryptography, going back over
four millennia.!

In the next subsection, we look at the overall framework for public-key
cryptography. Then we examine the requirements for the encryption/decryption
algorithm that is at the heart of the scheme.

Public-Key Cryptosystems

Asymmetric algorithms rely on one key for encryption and a different but related
key for decryption. These algorithms have the following important characteristic.

e It is computationally infeasible to determine the decryption key given only
knowledge of the cryptographic algorithm and the encryption key.

IDiffie and Hellman first publicly introduced the concepts of public-key cryptography in 1976. Hellman
credits Merkle with independently discovering the concept at that same time, although Merkle did not
publish until 1978 [MERK?78]. In fact, the first unclassified document describing public-key distribution
and public-key cryptography was a 1974 project proposal by Merkle (http:/merkle.com/1974). However,
this is not the true beginning. Admiral Bobby Inman, while director of the National Security Agency
(NSA), claimed that public-key cryptography had been discovered at NSA in the mid-1960s [SIMM93].
The first documented introduction of these concepts came in 1970, from the Communications-Electronics
Security Group, Britain’s counterpart to NSA, in a classified report by James Ellis [ELLI70]. Ellis
referred to the technique as nonsecret encryption and describes the discovery in [ELLI99].

http://merkle.com/1974

257

In addition, some algorithms, such as RSA, also exhibit the following characteristic.

Either of the two related keys can be used for encryption, with the other used
for decryption.

A public-key encryption scheme has six ingredients (Figure 9.1a; compare
with Figure 2.1).

Plaintext: This is the readable message or data that is fed into the algorithm as

input.
Bobs's
public-key
Joy Ted ?
Mike Alice
PU,, | Alice's public PR, | Alice's private
key key
Transmitted X=
ciphertext DIPR,, Y]
; ’
Y = E[PU,, X]
Plaintext Plaintext
:::;uetx Encryption algorithm Decryption algorithm (::tr;) 3’:
(e.g., RSA)
Bob (a) Encryption with public key Alice
Alice's
public key
? Joy Ted
Mike Bob
PR, | Bob's private PU, | Bob's public
key key
Transmitted
ciphertext /
>
Y = E[PR;, X]

Plaintext Plaintext
.a intex Encryption algorithm Decryption algorithm atntex
input (e.g., RSA) output

X2
Bob (b) Encryption with private key Alice

Public-Key Cryptography

258

Encryption algorithm: The encryption algorithm performs various transfor-
mations on the plaintext.

Public and private keys: This is a pair of keys that have been selected so that
if one is used for encryption, the other is used for decryption. The exact trans-
formations performed by the algorithm depend on the public or private key
that is provided as input.

Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the key. For a given message, two different keys will produce
two different ciphertexts.

Decryption algorithm: This algorithm accepts the ciphertext and the matching
key and produces the original plaintext.

The essential steps are the following.

Each user generates a pair of keys to be used for the encryption and decryp-
tion of messages.

Each user places one of the two keys in a public register or other accessible
file. This is the public key. The companion key is kept private. As Figure 9.1a
suggests, each user maintains a collection of public keys obtained from others.

If Bob wishes to send a confidential message to Alice, Bob encrypts the mes-
sage using Alice’s public key.

When Alice receives the message, she decrypts it using her private key. No
other recipient can decrypt the message because only Alice knows Alice’s pri-
vate key.

With this approach, all participants have access to public keys, and pri-
vate keys are generated locally by each participant and therefore need never be
distributed. As long as a user’s private key remains protected and secret, incom-
ing communication is secure. At any time, a system can change its private key and
publish the companion public key to replace its old public key.

Table 9.2 summarizes some of the important aspects of symmetric and public-
key encryption. To discriminate between the two, we refer to the key used in sym-
metric encryption as a secret key. The two keys used for asymmetric encryption are
referred to as the public key and the private key.2 Invariably, the private key is kept
secret, but it is referred to as a private key rather than a secret key to avoid confu-
sion with symmetric encryption.

Let us take a closer look at the essential elements of a public-key encryption
scheme, using Figure 9.2 (compare with Figure 2.2). There is some source A that
produces a message in plaintext, X = [Xy, X5, ..., Xy]. The M elements of X are let-
ters in some finite alphabet. The message is intended for destination B. B generates

The following notation is used consistently throughout. A secret key is represented by K,,, where m is
some modifier; for example, K, is a secret key owned by user A. A public key is represented by PU,, for
user A, and the corresponding private key is PR,. Encryption of plaintext X can be performed with a
secret key, a public key, or a private key, denoted by E(K,, X), E(PU,, X), and E(PR,, X), respectively.
Similarly, decryption of ciphertext C can be performed with a secret key, a public key, or a private key,
denoted by D(K,, X), D(PU,, X),and D(PR,, X), respectively.

259

Conventional and Public-Key Encryption

Conventional Encryption

Public-Key Encryption

Needed to Work:

1. The same algorithm with the same key is
used for encryption and decryption.

2. The sender and receiver must share the
algorithm and the key.
Needed for Security:
1. The key must be kept secret.

2. It must be impossible or at least impractical to
decipher a message if the key is kept secret.

3. Knowledge of the algorithm plus samples of
ciphertext must be insufficient to determine
the key.

Needed to Work:

1. One algorithm is used for encryption and a related
algorithm for decryption with a pair of keys, one for
encryption and one for decryption.

2. The sender and receiver must each have one of the
matched pair of keys (not the same one).

Needed for Security:

1. One of the two keys must be kept secret.

2. It must be impossible or at least impractical to
decipher a message if one of the keys is kept secret.

3. Knowledge of the algorithm plus one of the keys
plus samples of ciphertext must be insufficient to
determine the other key.

a related pair of keys: a public key,

PU,, and a private key, PR;,. PR, is known only

to B, whereas PUj, is publicly available and therefore accessible by A.
With the message X and the encryption key PUj, asinput, A forms the ciphertext

Y= [Yls Yz, ceey YN]

Y = E(PU,, X)

The intended receiver, in possession of the matching private key, is able to invert

the transformation:

X = D(PR,.Y)

A

—> X

Cryptanalyst A

J——>PR,
A A
Source A Destination B
Message Encryption \ _ | Decryption »| Destination
source algorithm Y =E[PU,, X] [algorithm e o
D[PRy, Y]
A A b
PU, PRy,

Public-Key Cryptosystem: Secrecy

Key pair

source

260

An adversary, observing Y and having access to PU,, but not having access to PRy,
or X, must attempt to recover X and/or PR),. It is assumed that the adversary does
have knowledge of the encryption (E) and decryption (D) algorithms. If the ad-
versary is interested only in this particular message, then the focus of effort is to
recover X by generating a plaintext estimate X. Often, however, the adversary is
interested in being able to read future messages as well, in which case an attempt is
made to recover PR, by generating an estimate PRy,.

We mentioned earlier that either of the two related keys can be used for en-
cryption, with the other being used for decryption. This enables a rather differ-
ent cryptographic scheme to be implemented. Whereas the scheme illustrated in
Figure 9.2 provides confidentiality, Figures 9.1b and 9.3 show the use of public-key
encryption to provide authentication:

Y = E(PR,, X)
X = D(PU,.Y)

In this case, A prepares a message to B and encrypts it using A’s private key
before transmitting it. B can decrypt the message using A’s public key. Because
the message was encrypted using A’s private key, only A could have prepared the
message. Therefore, the entire encrypted message serves as a digital signature.
In addition, it is impossible to alter the message without access to A’s private
key, so the message is authenticated both in terms of source and in terms of data
integrity.

In the preceding scheme, the entire message is encrypted, which, although val-
idating both author and contents, requires a great deal of storage. Each document

Cryptanalyst PR,

A A
Source A Destination B

—— A — A —

Message X Encryption Decryption »| Destination
source algorithm Y = E[PR,, X] 4 algorithm Yo

“
y

‘ I DIPU,, Y]

PR, PU,

Key pair
source

Public-Key Cryptosystem: Authentication

261

must be kept in plaintext to be used for practical purposes. A copy also must be
stored in ciphertext so that the origin and contents can be verified in case of a dis-
pute. A more efficient way of achieving the same results is to encrypt a small block
of bits that is a function of the document. Such a block, called an authenticator,
must have the property that it is infeasible to change the document without chang-
ing the authenticator. If the authenticator is encrypted with the sender’s private
key, it serves as a signature that verifies origin, content, and sequencing. Chapter 13
examines this technique in detail.

It is important to emphasize that the encryption process depicted in
Figures 9.1b and 9.3 does not provide confidentiality. That is, the message being
sent is safe from alteration but not from eavesdropping. This is obvious in the
case of a signature based on a portion of the message, because the rest of the
message is transmitted in the clear. Even in the case of complete encryption,
as shown in Figure 9.3, there is no protection of confidentiality because any
observer can decrypt the message by using the sender’s public key.

It is, however, possible to provide both the authentication function and confi-
dentiality by a double use of the public-key scheme (Figure 9.4):

Z = E(PU,, E(PR,, X))
X = D(PU,, D(PR,, Z))

In this case, we begin as before by encrypting a message, using the sender’s private
key. This provides the digital signature. Next, we encrypt again, using the receiver’s
public key. The final ciphertext can be decrypted only by the intended receiver, who
alone has the matching private key. Thus, confidentiality is provided. The disadvan-
tage of this approach is that the public-key algorithm, which is complex, must be
exercised four times rather than two in each communication.

Source A Destination B
Message X Encryption Y Encryption Z Decryption Y Decryption | | X Message
source algorithm algorithm algorithm algorithm dest.
PU, PR,

Key pair
source

PR, PU,

Key pair
source

Public-Key Cryptosystem: Authentication and Secrecy

262

Before proceeding, we need to clarify one aspect of public-key cryptosystems that is
otherwise likely to lead to confusion. Public-key systems are characterized by the use
of a cryptographic algorithm with two keys, one held private and one available pub-
licly. Depending on the application, the sender uses either the sender’s private key or
the receiver’s public key, or both, to perform some type of cryptographic function. In
broad terms, we can classify the use of public-key cryptosystems into three categories

Encryption/decryption: The sender encrypts a message with the recipient’s
public key.
Digital signature: The sender “signs” a message with its private key. Signing

is achieved by a cryptographic algorithm applied to the message or to a small
block of data that is a function of the message.

Key exchange: Two sides cooperate to exchange a session key. Several differ-
ent approaches are possible, involving the private key(s) of one or both parties.

Some algorithms are suitable for all three applications, whereas others can be
used only for one or two of these applications. Table 9.3 indicates the applications
supported by the algorithms discussed in this book.

The cryptosystem illustrated in Figures 9.2 through 9.4 depends on a cryptographic
algorithm based on two related keys. Diffie and Hellman postulated this system
without demonstrating that such algorithms exist. However, they did lay out the
conditions that such algorithms must fulfill [DIFF76b].

It is computationally easy for a party B to generate a pair (public key PU,,
private key PRy).

It is computationally easy for a sender A, knowing the public key and the mes-
sage to be encrypted, M, to generate the corresponding ciphertext:

C = E(PU,, M)

It is computationally easy for the receiver B to decrypt the resulting ciphertext
using the private key to recover the original message:

M = D(PRb7 C) = D[PRb’ E(PUb’M)]

It is computationally infeasible for an adversary, knowing the public key, PUy,
to determine the private key, PRy,

Applications for Public-Key Cryptosystems

Algorithm Encryption/Decryption | Digital Signature Key Exchange
RSA Yes Yes Yes
Elliptic Curve Yes Yes Yes
Diffie-Hellman No No Yes
DSS No Yes No

263

It is computationally infeasible for an adversary, knowing the public key, PU,,
and a ciphertext, C, to recover the original message, M.

We can add a sixth requirement that, although useful, is not necessary for all
public-key applications:

The two keys can be applied in either order:
M = D[PUbv E(PRb»M)] = D[PRb7 E(PUb7 M)]

These are formidable requirements, as evidenced by the fact that only a few
algorithms (RSA, elliptic curve cryptography, Diffie-Hellman, DSS) have received
widespread acceptance in the several decades since the concept of public-key cryp-
tography was proposed.

Before elaborating on why the requirements are so formidable, let us first re-
cast them. The requirements boil down to the need for a trap-door one-way func-
tion. A one-way function® is one that maps a domain into a range such that every
function value has a unique inverse, with the condition that the calculation of the
function is easy, whereas the calculation of the inverse is infeasible:

Y = f(X) easy
X =f7Y(Y) infeasible

Generally, easy is defined to mean a problem that can be solved in polynomial
time as a function of input length. Thus, if the length of the input is #n bits, then the
time to compute the function is proportional to n?, where a is a fixed constant. Such
algorithms are said to belong to the class P. The term infeasible is a much fuzzier
concept. In general, we can say a problem is infeasible if the effort to solve it grows
faster than polynomial time as a function of input size. For example, if the length
of the input is » bits and the time to compute the function is proportional to 2",
the problem is considered infeasible. Unfortunately, it is difficult to determine if a
particular algorithm exhibits this complexity. Furthermore, traditional notions of
computational complexity focus on the worst-case or average-case complexity of
an algorithm. These measures are inadequate for cryptography, which requires that
it be infeasible to invert a function for virtually all inputs, not for the worst case or
even average case. A brief introduction to some of these concepts is provided in
Appendix 9A.

We now turn to the definition of a trap-door one-way function, which is easy
to calculate in one direction and infeasible to calculate in the other direction un-
less certain additional information is known. With the additional information the
inverse can be calculated in polynomial time. We can summarize as follows: A trap-
door one-way function is a family of invertible functions f;, such that

Y = f,(X) easy, if k and X are known
X = 1Y) easy,if kand Y are known
X =f;(Y) infeasible, if Y is known but k is not known

3Not to be confused with a one-way hash function, which takes an arbitrarily large data field as its
argument and maps it to a fixed output. Such functions are used for authentication (see Chapter 11).

264

Thus, the development of a practical public-key scheme depends on discovery of a
suitable trap-door one-way function.

As with symmetric encryption, a public-key encryption scheme is vulnerable to a
brute-force attack. The countermeasure is the same: Use large keys. However, there
is a tradeoff to be considered. Public-key systems depend on the use of some sort of
invertible mathematical function. The complexity of calculating these functions may
not scale linearly with the number of bits in the key but grow more rapidly than that.
Thus, the key size must be large enough to make brute-force attack impractical but
small enough for practical encryption and decryption. In practice, the key sizes that
have been proposed do make brute-force attack impractical but result in encryption/
decryption speeds that are too slow for general-purpose use. Instead, as was men-
tioned earlier, public-key encryption is currently confined to key management and
signature applications.

Another form of attack is to find some way to compute the private key given
the public key. To date, it has not been mathematically proven that this form of at-
tack is infeasible for a particular public-key algorithm. Thus, any given algorithm,
including the widely used RSA algorithm, is suspect. The history of cryptanalysis
shows that a problem that seems insoluble from one perspective can be found to
have a solution if looked at in an entirely different way.

Finally, there is a form of attack that is peculiar to public-key systems. This is,
in essence, a probable-message attack. Suppose, for example, that a message were to
be sent that consisted solely of a 56-bit DES key. An adversary could encrypt all pos-
sible 56-bit DES keys using the public key and could discover the encrypted key by
matching the transmitted ciphertext. Thus, no matter how large the key size of the
public-key scheme, the attack is reduced to a brute-force attack on a 56-bit key. This
attack can be thwarted by appending some random bits to such simple messages.

The pioneering paper by Diffie and Hellman [DIFF76b] introduced a new approach
to cryptography and, in effect, challenged cryptologists to come up with a crypto-
graphic algorithm that met the requirements for public-key systems. A number of
algorithms have been proposed for public-key cryptography. Some of these, though
initially promising, turned out to be breakable.*

One of the first successful responses to the challenge was developed in 1977
by Ron Rivest, Adi Shamir, and Len Adleman at MIT and first published in 1978
[RIVE78].> The Rivest-Shamir-Adleman (RSA) scheme has since that time reigned
supreme as the most widely accepted and implemented general-purpose approach
to public-key encryption.

4The most famous of the fallen contenders is the trapdoor knapsack proposed by Ralph Merkle. We
describe this in Appendix J.

3 Apparently, the first workable public-key system for encryption/decryption was put forward by Clifford
Cocks of Britain’s CESG in 1973 [COCK73]; Cocks’ method is virtually identical to RSA.

265

The RSA scheme is a cipher in which the plaintext and ciphertext are integers
between 0 and n — 1 for some n. A typical size for n is 1024 bits, or 309 decimal
digits. That is, n is less than 21024 'We examine RSA in this section in some detail,
beginning with an explanation of the algorithm. Then we examine some of the com-
putational and cryptanalytical implications of RSA.

RSA makes use of an expression with exponentials. Plaintext is encrypted in blocks,
with each block having a binary value less than some number n. That is, the block
size must be less than or equal to logy(n) + 1; in practice, the block size is i bits,
where 2/ < n =< 2!, Encryption and decryption are of the following form, for some
plaintext block M and ciphertext block C.

C = M°modn
M= C%modn = (Me)d mod n = M*“mod n
Both sender and receiver must know the value of n. The sender knows the
value of e, and only the receiver knows the value of d. Thus, this is a public-key en-
cryption algorithm with a public key of PU = {e, n} and a private key of PR = {d, n}.
For this algorithm to be satisfactory for public-key encryption, the following require-
ments must be met.
It is possible to find values of e, d, and n such that M modn = M forall M < n.
It is relatively easy to calculate M¢ mod n and C? mod n for all values of M < n.
It is infeasible to determine d given e and n.

For now, we focus on the first requirement and consider the other questions
later. We need to find a relationship of the form

M modn = M

The preceding relationship holds if e and d are multiplicative inverses modulo ¢(n),
where ¢(n) is the Euler totient function. It is shown in Chapter 8 that for p, g prime,
&(pg) = (p — 1)(g — 1). The relationship between e and d can be expressed as

edmod ¢(n) =1 9.1
This is equivalent to saying
ed = 1 mod ¢(n)
d = e ' mod ¢(n)
That is, e and d are multiplicative inverses mod ¢(#n). Note that, according to the
rules of modular arithmetic, this is true only if d (and therefore e) is relatively
prime to ¢(n). Equivalently, gcd(¢p(n), d) = 1. See Appendix R for a proof that

Equation (9.1) satisfies the requirement for RSA.
We are now ready to state the RSA scheme. The ingredients are the following:

D, 4, two prime numbers (private, chosen)
n=pq (public, calculated)
e, with ged(dp(n), e) = 1;1 < e < ¢(n) (public, chosen)
d=e"' (mod ¢(n)) (private, calculated)

266

The private key consists of {d, n} and the public key consists of {e, n}. Suppose
that user A has published its public key and that user B wishes to send the message
M to A. Then B calculates C = M® mod » and transmits C. On receipt of this cipher-
text, user A decrypts by calculating M = C%mod n.

Figure 9.5 summarizes the RSA algorithm. It corresponds to Figure 9.1a: Alice
generates a public/private key pair; Bob encrypts using Alice’s public key; and Alice
decrypts using her private key. An example from [SING99] is shown in Figure 9.6.
For this example, the keys were generated as follows.

Select two prime numbers, p = 17 and g = 11.
Calculate n = pg = 17 X 11 = 187.
Calculate ¢p(n) = (p — 1)(g — 1) = 16 X 10 = 160.

Select e such that e is relatively prime to ¢(rn) = 160 and less than ¢(n); we
choose e =7

Determine d such that de = 1 (mod 160) and d < 160. The correct value is
d = 23, because 23 X 7 = 161 = (1 X 160) + 1; d can be calculated using the
extended Euclid’s algorithm (Chapter 4).

The resulting keys are public key PU = {7, 187} and private key PR = {23, 187}.
The example shows the use of these keys for a plaintext input of M = 88. For
encryption, we need to calculate C = 88’ mod 187. Exploiting the properties of
modular arithmetic, we can do this as follows.

88" mod 187 = [(88* mod 187) X (88%> mod 187)
X (88! mod 187)] mod 187

88! mod 187 = 88

88> mod 187 = 7744 mod 187 = 77

88* mod 187 = 59,969,536 mod 187 = 132

88’ mod 187 = (88 X 77 X 132) mod 187 = 894,432 mod 187 = 11

For decryption, we calculate M = 113 mod 187:

112 mod 187 = [(11' mod 187) X (11> mod 187) X (11* mod 187)
X (11 mod 187) X (11 mod 187)] mod 187

11' mod 187 = 11

11> mod 187 = 121

11* mod 187 = 14,641 mod 187 = 55

11 mod 187 = 214,358,881 mod 187 = 33

112 mod 187 = (11 X 121 X 55 X 33 X 33) mod 187
= 79,720,245 mod 187 = 88

We now look at an example from [HELL79], which shows the use of RSA to
process multiple blocks of data. In this simple example, the plaintext is an alpha-
numeric string. Each plaintext symbol is assigned a unique code of two decimal

267

Key Generation by Alice
Select p, q p and g both prime, p # ¢q
Calculaten = p X q

Calcuate ¢(n) = (p — 1)(g — 1)

Select integer e gcd (p(n),e) = 1;1 < e < ¢(n)
Calculate d d = ¢! (mod ¢(n))

Public key PU = e, n}

Private key PR = {d,n}

Encryption by Bob with Alice’s Public Key
Plaintext: M<n

Ciphertext: C = M°modn

Decryption by Alice with Alice’s Public Key

Ciphertext: C
Plaintext: M = C%mod n
The RSA Algorithm
Encryption Decryption
. Ciphertext)
Plaintext Plaintext

88 — P> 88C§mod= 11 1l 11?%0(1: 88 +—> 88

f

|/

|
PU=1,187 PR =123, 1
Example of RSA Algorithm

/
8

7

digits (e.g., a = 00, A = 26).6 A plaintext block consists of four decimal digits, or
two alphanumeric characters. Figure 9.7a illustrates the sequence of events for the
encryption of multiple blocks, and Figure 9.7b gives a specific example. The circled
numbers indicate the order in which operations are performed.

We now turn to the issue of the complexity of the computation required to use
RSA. There are actually two issues to consider: encryption/decryption and key
generation. Let us look first at the process of encryption and decryption and then
consider key generation.

The complete mapping of alphanumeric characters to decimal digits is at this book’s Premium Content
Web site in the document RSAexample.pdf.

268

Sender Sender
@ | © |
Plaintext P //ow are_you \
Decimal string 3314226200 17 04\62 24 14 20 66
@ @
Blocks of numbers P, =3314 P,=2262 P,=0017
PoPpooo P,=0462 P, =2414 P,=2066
® ®
@ Ciphertext C @ C, =3314" mod 11023 = 10260
. C, =2262" mod 11023 = 9489
Publickey| | C; =P/ modn e=11 C,= 17" mod 11023 = 1782
en =ity il n =11023 C, = 462" mod 11023 =727
. 3 C, = 2414'"" mod 11023 = 10032
. C, =2066" mod 11023 = 2253
n=pq 11023 = 73x151
@ Transmit @ Transmit
@ | @
an;ne ey LEEO T d =891 P, = 102605 mod 11023 = 3314
btz decimal text n = 11023 P, = 94891 mod 11023 = 2262
= =
P,=C modn P, =1782%"" mod 11023 = 0017
d = e mod ¢(n) P,=C,mod n 5891 = 11! mod 10800 P, ="727%" mod 11023 = 0462
dm)y=@-1(g-1) o 10800 = (73 -1)(151 - 1) | P, =10032%" mod 11023 = 2414
@ n=pq : @ || 11023 =73x51 P, =2253% mod 11023 = 2066
e=11
ép,q p=73,q=151

{ 1

Random number . Random number
generator generator

|[«——Receiver |[¢——— Receiver

(a) General approach (b) Example
RSA Processing of Multiple Blocks

Both encryption and decryption in RSA
involve raising an integer to an integer power, mod n. If the exponentiation is done
over the integers and then reduced modulo n, the intermediate values would be
gargantuan. Fortunately, as the preceding example shows, we can make use of a
property of modular arithmetic:

[(a mod n) X (bmodn)]modn = (a X b) mod n

Thus, we can reduce intermediate results modulo n. This makes the calculation
practical.

Another consideration is the efficiency of exponentiation, because with RSA,
we are dealing with potentially large exponents. To see how efficiency might be in-
creased, consider that we wish to compute x'®. A straightforward approach requires
15 multiplications:

16—x><x><x><x><x><x><x><x><x><x><x><x><x><x><x><x

269

However, we can achieve the same final result with only four multiplications if we
repeatedly take the square of each partial result, successively forming (x?, x*, x5, x16).
As another example, suppose we wish to calculate x!' mod n for some integers x
and n. Observe that x'' = x!"*8 = (x)(x?)(x®). In this case, we compute x mod n,
x*> mod #n, x* mod n, and x® mod n and then calculate [(x mod n) X (x* mod n) X
(x® mod n)] mod n.

More generally, suppose we wish to find the value a? mod n with a, b, and m

positive integers. If we express b as a binary number bby_; . . . by, then we have

b=>72
b;#0
Therefore,

ab = a(biEj() — H a(zi)

b;#0

i

abmod n = { 11 a(zi)}mod n= < 11 [a(z[)mod n})mod n

b;#0 b;#0

We can therefore develop the algorithm’ for computing a” mod n, shown in
Figure 9.8. Table 9.4 shows an example of the execution of this algorithm. Note that
the variable c is not needed; it is included for explanatory purposes. The final value
of c is the value of the exponent.

To speed up the operation of the
RSA algorithm using the public key, a specific choice of e is usually made. The most
common choice is 65537 (2'° + 1); two other popular choices are 3 and 17. Each of
these choices has only two 1 bits, so the number of multiplications required to per-
form exponentiation is minimized.

c« 0; £« 1
for i < k downto 0
do c« 2 X ¢
f« (f X £f) mod n
if b; =1
then c < c + 1
f« (f X a) mod n

return f

Note: The integer b is expressed as a
binary number byby _1 ... by.

Algorithm for Computing a” mod n

"The algorithm has a long history; this particular pseudocode expression is from [CORMO09].

270

Result of the Fast Modular Exponentiation Algorithm for ® mod n, where a = 7,
b =560 = 1000110000, and n = 561

i 9 8 7 6 5 4 3 2 1 0
b; 1 0 0 0 1 1 0 0 0 0
c 1 2 4 8 17 35 70 140 280 560
f 7 49 157 526 160 241 298 166 67 1

However, with a very small public key, such as e = 3, RSA becomes vulnerable
to a simple attack. Suppose we have three different RSA users who all use the value
e = 3 but have unique values of n, namely (ny, n,, n3). If user A sends the same en-
crypted message M to all three users, then the three ciphertexts are C; = M> mod n4,
C, = M> mod ny, and C3 = M> mod ns. It is likely that ny, ny, and n3 are pairwise
relatively prime. Therefore, one can use the Chinese remainder theorem (CRT) to
compute M> mod (nin,n3). By the rules of the RSA algorithm, M is less than each
of the n;; therefore M> < nynns. Accordingly, the attacker need only compute the
cube root of M. This attack can be countered by adding a unique pseudorandom bit
string as padding to each instance of M to be encrypted. This approach is discussed
subsequently.

The reader may have noted that the definition of the RSA algorithm
(Figure 9.5) requires that during key generation the user selects a value of e that is
relatively prime to ¢(n). Thus, if a value of e is selected first and the primes p and
q are generated, it may turn out that gcd(¢(n), e) # 1. In that case, the user must
reject the p, g values and generate a new p, g pair.

We cannot similarly choose a small
constant value of d for efficient operation. A small value of d is vulnerable to a
brute-force attack and to other forms of cryptanalysis [WIEN90]. However, there
is a way to speed up computation using the CRT. We wish to compute the value
M = C?mod n. Let us define the following intermediate results:

V, = C%mod p V, = C%mod ¢
Following the CRT using Equation (8.8), define the quantities
X,=qx (g 'modp) X,=p X (p 'modq)
The CRT then shows, using Equation (8.9), that
M= (V,X,+ V,X,) modn

Furthermore, we can simplify the calculation of V,, and V, using Fermat’s
theorem, which states that a” ' =1 (mod p) if p and a are relatively prime. Some
thought should convince you that the following are valid.

V, = Cimodp = C4™d =D mod p V, = C%mod g = C4™4@ D mod g

271

The quantities d mod (p — 1) and d mod (g — 1) can be precalculated. The end
result is that the calculation is approximately four times as fast as evaluating M = C¢
mod # directly [BONEOQ2].

Before the application of the public-key cryptosystem, each
participant must generate a pair of keys. This involves the following tasks.

Determining two prime numbers, p and q.
Selecting either e or d and calculating the other.

First, consider the selection of p and g. Because the value of n = pq will be
known to any potential adversary, in order to prevent the discovery of p and g by
exhaustive methods, these primes must be chosen from a sufficiently large set (i.e.,
p and g must be large numbers). On the other hand, the method used for finding
large primes must be reasonably efficient.

At present, there are no useful techniques that yield arbitrarily large primes,
so some other means of tackling the problem is needed. The procedure that is gen-
erally used is to pick at random an odd number of the desired order of magnitude
and test whether that number is prime. If not, pick successive random numbers until
one is found that tests prime.

A variety of tests for primality have been developed (e.g., see [KNUT98] for
a description of a number of such tests). Almost invariably, the tests are probabi-
listic. That is, the test will merely determine that a given integer is probably prime.
Despite this lack of certainty, these tests can be run in such a way as to make the
probability as close to 1.0 as desired. As an example, one of the more efficient
and popular algorithms, the Miller-Rabin algorithm, is described in Chapter 8.
With this algorithm and most such algorithms, the procedure for testing whether
a given integer » is prime is to perform some calculation that involves n and a
randomly chosen integer a. If n “fails” the test, then # is not prime. If n “passes”
the test, then » may be prime or nonprime. If n passes many such tests with many
different randomly chosen values for a, then we can have high confidence that n
is, in fact, prime.

In summary, the procedure for picking a prime number is as follows.

Pick an odd integer n at random (e.g., using a pseudorandom number
generator).

Pick an integer a < n at random.

Perform the probabilistic primality test, such as Miller-Rabin, with a as a
parameter. If n fails the test, reject the value n and go to step 1.

If n has passed a sufficient number of tests, accept n; otherwise, go to step 2.

This is a somewhat tedious procedure. However, remember that this process is
performed relatively infrequently: only when a new pair (PU, PR) is needed.

It is worth noting how many numbers are likely to be rejected before a
prime number is found. A result from number theory, known as the prime num-
ber theorem, states that the primes near N are spaced on the average one every

272

In (N) integers. Thus, on average, one would have to test on the order of In(N)
integers before a prime is found. Actually, because all even integers can be im-
mediately rejected, the correct figure is In(N)/2. For example, if a prime on the
order of magnitude of 2°%’ were sought, then about In(22?)/2 = 70 trials would be
needed to find a prime.

Having determined prime numbers p and g, the process of key generation
is completed by selecting a value of e and calculating d or, alternatively, selecting
a value of d and calculating e. Assuming the former, then we need to select an e
such that ged(¢(n), e) = 1 and then calculate d = ¢! (mod ¢(n)). Fortunately,
there is a single algorithm that will, at the same time, calculate the greatest com-
mon divisor of two integers and, if the gecd is 1, determine the inverse of one of
the integers modulo the other. The algorithm, referred to as the extended Euclid’s
algorithm, is explained in Chapter 4. Thus, the procedure is to generate a series
of random numbers, testing each against ¢(n) until a number relatively prime to
¢(n) is found. Again, we can ask the question: How many random numbers must
we test to find a usable number, that is, a number relatively prime to ¢(n)? It
can be shown easily that the probability that two random numbers are relatively
prime is about 0.6; thus, very few tests would be needed to find a suitable integer
(see Problem 8.2).

Five possible approaches to attacking the RSA algorithm are

Brute force: This involves trying all possible private keys.

Mathematical attacks: There are several approaches, all equivalent in effort to
factoring the product of two primes.

Timing attacks: These depend on the running time of the decryption algorithm.

Hardware fault-based attack: This involves inducing hardware faults in the
processor that is generating digital signatures.

Chosen ciphertext attacks: This type of attack exploits properties of the RSA
algorithm.

The defense against the brute-force approach is the same for RSA as for other
cryptosystems, namely, to use a large key space. Thus, the larger the number of bits
in d, the better. However, because the calculations involved, both in key generation
and in encryption/decryption, are complex, the larger the size of the key, the slower
the system will run.

In this subsection, we provide an overview of mathematical and timing attacks.

We can identify three approaches to attacking RSA
mathematically.

Factor nintoits two prime factors. This enables calculationof (n) = (p — 1) X
(¢ — 1), which in turn enables determination of d = e~ (mod ¢(n)).

Determine ¢(n) directly, without first determining p and q. Again, this enables
determination of d=e~! (mod ¢(n)).

Determine d directly, without first determining ¢(n).

273

Most discussions of the cryptanalysis of RSA have focused on the task of factor-
ing n into its two prime factors. Determining ¢(rn) given n is equivalent to factoring n
[RIBE96]. With presently known algorithms, determining d given e and n appears to
be at least as time-consuming as the factoring problem [KALI95]. Hence, we can use
factoring performance as a benchmark against which to evaluate the security of RSA.

For a large n with large prime factors, factoring is a hard problem, but it is
not as hard as it used to be. A striking illustration of this is the following. In 1977,
the three inventors of RSA dared Scientific American readers to decode a cipher
they printed in Martin Gardner’s “Mathematical Games” column [GARD77]. They
offered a $100 reward for the return of a plaintext sentence, an event they predicted
might not occur for some 40 quadrillion years. In April of 1994, a group working
over the Internet claimed the prize after only eight months of work [LEUT94]. This
challenge used a public key size (length of n) of 129 decimal digits, or around 428
bits. In the meantime, just as they had done for DES, RSA Laboratories had issued
challenges for the RSA cipher with key sizes of 100, 110, 120, and so on, digits. The
latest challenge to be met is the RSA-768 challenge with a key length of 232 decimal
digits, or 768 bits. Table 9.5 shows the results to date. Million-instructions-per-second
processor running for one year, which is about 3 X 10! instructions executed.
A 1 GHz Pentium is about a 250-MIPS machine.

A striking fact about the progress reflected in Table 9.5 concerns the method
used. Until the mid-1990s, factoring attacks were made using an approach known
as the quadratic sieve. The attack on RSA-130 used a newer algorithm, the general-
ized number field sieve (GNFS), and was able to factor a larger number than RSA-
129 at only 20% of the computing effort.

The threat to larger key sizes is twofold: the continuing increase in comput-
ing power and the continuing refinement of factoring algorithms. We have seen
that the move to a different algorithm resulted in a tremendous speedup. We
can expect further refinements in the GNFS, and the use of an even better algo-
rithm is also a possibility. In fact, a related algorithm, the special number field

Progress in RSA Factorization

Number of Decimal Digits Number of Bits Date Achieved
100 332 April 1991
110 365 April 1992
120 398 June 1993
129 428 April 1994
130 431 April 1996
140 465 February 1999
155 512 August 1999
160 530 April 2003
174 576 December 2003
200 663 May 2005
193 640 November 2005
232 768 December 2009

274 CHAPTER 9 / PUBLIC-KEY CRYPTOGRAPHY AND RSA

1022

1020 p
108
[L=
o L Genergl number /
104 field sieve . / / P L~
[=
10" y e
/ A
_ / L=

108
/ Special number
B / field sieve
10°

MIPS-years needed to factor

10*
107
10°
600 800 1000 1200 1400 1600 1800 2000
Bits

Figure 9.9 MIPS-years Needed to Factor

sieve (SNFS), can factor numbers with a specialized form considerably faster
than the generalized number field sieve. Figure 9.9 compares the performance
of the two algorithms. It is reasonable to expect a breakthrough that would en-
able a general factoring performance in about the same time as SNFS, or even
better [ODLY95]. Thus, we need to be careful in choosing a key size for RSA.
The team that produced the 768-bit factorization made the following observa-
tion [KLEI10]:

Factoring a 1024-bit RSA modulus would be about a thousand
times harder than factoring a 768-bit modulus, and a 768-bit RSA
modulus is several thousands times harder to factor than a 512-bit
one. Because the first factorization of a 512-bit RSA modulus

275

was reported only a decade, it is not unreasonable to expect
that 1024-bit RSA moduli can be factored well within the next
decade by an academic effort such as ours. Thus, it would be
prudent to phase out usage of 1024-bit RSA within the next
three to four years.

In addition to specifying the size of n, a number of other constraints have been
suggested by researchers. To avoid values of n that may be factored more easily, the
algorithm’s inventors suggest the following constraints on p and q.

p and q should differ in length by only a few digits. Thus, for a 1024-bit key
(309 decimal digits), both p and g should be on the order of magnitude of
107 to 1010,

Both (p — 1) and (¢ — 1) should contain a large prime factor.
gcd(p — 1,9 — 1) should be small.

In addition, it has been demonstrated that if e < n and d < n'*, then d can be
easily determined [WIENO90].

If one needed yet another lesson about how difficult it is to
assess the security of a cryptographic algorithm, the appearance of timing attacks
provides a stunning one. Paul Kocher, a cryptographic consultant, demonstrated
that a snooper can determine a private key by keeping track of how long a computer
takes to decipher messages [KOCH96, KALI96b]. Timing attacks are applicable
not just to RSA, but to other public-key cryptography systems. This attack is alarm-
ing for two reasons: It comes from a completely unexpected direction, and it is a
ciphertext-only attack.

A timing attack is somewhat analogous to a burglar guessing the combination
of a safe by observing how long it takes for someone to turn the dial from number
to number. We can explain the attack using the modular exponentiation algorithm
of Figure 9.8, but the attack can be adapted to work with any implementation that
does not run in fixed time. In this algorithm, modular exponentiation is accom-
plished bit by bit, with one modular multiplication performed at each iteration and
an additional modular multiplication performed for each 1 bit.

As Kocher points out in his paper, the attack is simplest to understand in an
extreme case. Suppose the target system uses a modular multiplication function that
is very fast in almost all cases but in a few cases takes much more time than an entire
average modular exponentiation. The attack proceeds bit-by-bit starting with the
leftmost bit, b;. Suppose that the first j bits are known (to obtain the entire expo-
nent, start with j = 0 and repeat the attack until the entire exponent is known). For
a given ciphertext, the attacker can complete the first j iterations of the for loop.
The operation of the subsequent step depends on the unknown exponent bit. If the
bitis set, d <— (d X a) mod n will be executed. For a few values of a and d, the modu-
lar multiplication will be extremely slow, and the attacker knows which these are.
Therefore, if the observed time to execute the decryption algorithm is always slow
when this particular iteration is slow with a 1 bit, then this bit is assumed to be 1. If
a number of observed execution times for the entire algorithm are fast, then this bit
is assumed to be 0.

276

In practice, modular exponentiation implementations do not have such
extreme timing variations, in which the execution time of a single iteration can
exceed the mean execution time of the entire algorithm. Nevertheless, there is
enough variation to make this attack practical. For details, see [KOCH96].

Although the timing attack is a serious threat, there are simple countermea-
sures that can be used, including the following.

Constant exponentiation time: Ensure that all exponentiations take the same
amount of time before returning a result. This is a simple fix but does degrade
performance.

Random delay: Better performance could be achieved by adding a random
delay to the exponentiation algorithm to confuse the timing attack. Kocher
points out that if defenders don’t add enough noise, attackers could still succeed
by collecting additional measurements to compensate for the random delays.

Blinding: Multiply the ciphertext by a random number before performing
exponentiation. This process prevents the attacker from knowing what cipher-
text bits are being processed inside the computer and therefore prevents the
bit-by-bit analysis essential to the timing attack.

RSA Data Security incorporates a blinding feature into some of its products.
The private-key operation M = C,; mod # is implemented as follows.

Generate a secret random number r between 0 and n — 1.
Compute C' = C(r°) mod n, where e is the public exponent.
Compute M' = (C')? mod n with the ordinary RSA implementation.

Compute M = M'r ' mod n. In this equation, 7! is the multiplicative inverse
of r mod n; see Chapter 4 for a discussion of this concept. It can be demon-
strated that this is the correct result by observing that 7 mod n = r mod n.

RSA Data Security reports a 2 to 10% performance penalty for blinding.

Still another unorthodox approach to attacking RSA is re-
ported in [PELL10]. The approach is an attack on a processor that is generating
RSA digital signatures. The attack induces faults in the signature computation by
reducing the power to the processor. The faults cause the software to produce in-
valid signatures, which can then be analyzed by the attacker to recover the private
key. The authors show how such an analysis can be done and then demonstrate it
by extracting a 1024-bit private RSA key in approximately 100 hours, using a com-
mercially available microprocessor.

The attack algorithm involves inducing single-bit errors and observing the re-
sults. The details are provided in [PELL10], which also references other proposed
hardware fault-based attacks against RSA.

This attack, while worthy of consideration, does not appear to be a serious
threat to RSA. It requires that the attacker have physical access to the target
machine and that the attacker is able to directly control the input power to the
processor. Controlling the input power would for most hardware require more than
simply controlling the AC power, but would also involve the power supply control
hardware on the chip.

277

The
basic RSA algorithm is vulnerable to a chosen ciphertext attack (CCA). CCA is
defined as an attack in which the adversary chooses a number of ciphertexts and
is then given the corresponding plaintexts, decrypted with the target’s private key.
Thus, the adversary could select a plaintext, encrypt it with the target’s public key,
and then be able to get the plaintext back by having it decrypted with the private
key. Clearly, this provides the adversary with no new information. Instead, the ad-
versary exploits properties of RSA and selects blocks of data that, when processed
using the target’s private key, yield information needed for cryptanalysis.

A simple example of a CCA against RSA takes advantage of the following
property of RSA:

E(PU, M,) X E(PU, M,) = E(PU, [M; X M,)) 9.2)
We can decrypt C = M°® mod n using a CCA as follows.

Compute X = (C X 2°) mod n.
Submit X as a chosen ciphertext and receive back Y = X mod n.

But now note that
X = (Cmod n) X (2°mod n)
= (M°mod n) X (2° mod n)
= (2M)*mod n

Therefore, Y = (2M) mod n. From this, we can deduce M. To overcome this
simple attack, practical RSA-based cryptosystems randomly pad the plaintext prior
to encryption. This randomizes the ciphertext so that Equation (9.2) no longer
holds. However, more sophisticated CCAs are possible, and a simple padding with a
random value has been shown to be insufficient to provide the desired security. To
counter such attacks, RSA Security Inc., a leading RSA vendor and former holder
of the RSA patent, recommends modifying the plaintext using a procedure known
as optimal asymmetric encryption padding (OAEP). A full discussion of the threats
and OAEP are beyond our scope; see [POIN02] for an introduction and [BELL94]
for a thorough analysis. Here, we simply summarize the OAEP procedure.

Figure 9.10 depicts OAEP encryption. As a first step, the message M to be
encrypted is padded. A set of optional parameters, P, is passed through a hash
function, H.® The output is then padded with zeros to get the desired length in the
overall data block (DB). Next, a random seed is generated and passed through
another hash function, called the mask generating function (MGF). The resulting
hash value is bit-by-bit XORed with DB to produce a maskedDB. The maskedDB
is in turn passed through the MGF to form a hash that is XORed with the seed
to produce the maskedseed. The concatenation of the maskedseed and the
maskedDB forms the encoded message EM. Note that the EM includes the padded
message, masked by the seed, and the seed, masked by the maskedDB. The EM is
then encrypted using RSA.

8A hash function maps a variable-length data block or message into a fixed-length value called a hash
code. Hash functions are discussed in depth in Chapter 11.

278 CHAPTER 9 / PUBLIC-KEY CRYPTOGRAPHY AND RSA

L » |
Seed | M
| |
| |
| |
Ha) : :
| |
| | | |
| |
: Padding :
| l |
| | | |
I I
DB
| MaskedDB
| |
| |
| |
LGP I
—6) |
| |
| |
|
Maskedseed :
|
| l | |
I
EM
P = encoding parameters DB = data block
M = message to be encoded MGF = mask generating function
H = hash function EM = encoded message

Figure 9.10 Encryption Using Optimal Asymmetric
Encryption Padding (OAEP)

9.3 RECOMMENDED READING

The recommended treatments of encryption listed in Chapter 3 cover public-key as well as
symmetric encryption.

[DIFF88] describes in detail the several attempts to devise secure two-key crypto-
algorithms and the gradual evolution of a variety of protocols based on them. [CORMO09]
provides a concise but complete and readable summary of all of the algorithms relevant to
the verification, computation, and cryptanalysis of RSA. [BONE99] and [SHAMO3] discuss
various cryptanalytic attacks on RSA.

BONEY99 Boneh, D. “Twenty Years of Attacks on the RSA Cryptosystem.” Notices of
the American Mathematical Society, February 1999.

CORMO09 Cormen,T.;Leiserson, C.; Rivest, R.; and Stein, C. Introduction to Algorithms.
Cambridge, MA: MIT Press, 20009.

9.4 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 279

DIFF88 Diffie, W. “The First Ten Years of Public-Key Cryptography.” Proceedings of the

IEEE, May 1988.

SHAMO03 Shamir, A., and Tromer, E. “On the Cost of Factoring RSA-1024.”

CryptoBytes, Summer 2003. http://www.rsasecurity.com/rsalabs

9.4 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
chosen ciphertext attack (CCA) | private key time complexity
digital signature public key timing attack
key exchange public-key cryptography trap-door one-way function
one-way function public-key cryptosystems
optimal asymmetric encryption | public-key encryption
padding (OAEP) RSA

Review Questions

9.1 What are the principal elements of a public-key cryptosystem?

9.2 What are the roles of the public and private key?

9.3 What are three broad categories of applications of public-key cryptosystems?

9.4 What requirements must a public-key cryptosystems fulfill to be a secure algorithm?

9.5 What is a one-way function?

9.6 What is a trap-door one-way function?

9.7 Describe in general terms an efficient procedure for picking a prime number.
Problems

9.1 Prior to the discovery of any specific public-key schemes, such as RSA, an existence

proof was developed whose purpose was to demonstrate that public-key encryption
is possible in theory. Consider the functions f;(x1) = z1; £(x2, ¥2) = 223 f3(x3, y3) = 23,
where all values are integers with 1 =< x;, y;, z; = N. Function f; can be represented by
a vector M1 of length N, in which the kth entry is the value of f;(k). Similarly, f, and
f3 can be represented by N X N matrices M2 and M3. The intent is to represent the
encryption/decryption process by table lookups for tables with very large values of N.
Such tables would be impractically huge but could be constructed in principle. The
scheme works as follows: Construct M1 with a random permutation of all integers
between 1 and N; that is, each integer appears exactly once in M1. Construct M2 so
that each row contains a random permutation of the first N integers. Finally, fill in M3
to satisfy the following condition:

f3(f(f1(k), p), k) = p forallk,pwithl <= k,p = N

To summarize,

1. M1 takes an input k and produces an output x.
2. M2 takes inputs x and p giving output z.

3. M3 takes inputs z and k and produces p.

The three tables, once constructed, are made public.

http://www.rsasecurity.com/rsalabs

280

It should be clear that it is possible to construct M3 to satisfy the preceding condi-
tion. As an example, fill in M3 for the following simple case:

M1 M2 = M3 =

|
[=[e]>]=]v]
| w|= s wn
n~|w |
w|s|v|lun|w
ISR N N
—ln || W]

Convention: The ith element of M1 corresponds to k = i. The ith row of M2 cor-
responds to x = i; the jth column of M2 corresponds to p = j. The ith row of M3
corresponds to z = i; the jth column of M3 corresponds to k = j.
Describe the use of this set of tables to perform encryption and decryption
between two users.
Argue that this is a secure scheme.
Perform encryption and decryption using the RSA algorithm, as in Figure 9.5, for the
following:

p=3qg=11,e=T7M=>5
p=5qg=11,e=3M=9
p=Tq=1l,e=17;M = 8
p=11;g =13,e = 11;M =7
p=179q =3l,e =T,M =

Hint: Decryption is not as hard as you think; use some finesse.
In a public-key system using RSA, you intercept the ciphertext C = 10 sent to a user
whose public key is e = 5, n = 35. What is the plaintext M?
In an RSA system, the public key of a given user is e = 31, n = 3599. What is the pri-
vate key of this user? Hint: First use trial-and-error to determine p and ¢g; then use the
extended Euclidean algorithm to find the multiplicative inverse of 31 modulo ¢(n).
In using the RSA algorithm, if a small number of repeated encodings give back the
plaintext, what is the likely cause?
Suppose we have a set of blocks encoded with the RSA algorithm and we don’t have
the private key. Assume n = pgq, e is the public key. Suppose also someone tells us
they know one of the plaintext blocks has a common factor with n. Does this help us
in any way?
In the RSA public-key encryption scheme, each user has a public key, ¢, and a private
key, d. Suppose Bob leaks his private key. Rather than generating a new modulus, he
decides to generate a new public and a new private key. Is this safe?
Suppose Bob uses the RSA cryptosystem with a very large modulus # for which the
factorization cannot be found in a reasonable amount of time. Suppose Alice sends
a message to Bob by representing each alphabetic character as an integer between 0
and 25 (A —0, ..., Z—25) and then encrypting each number separately using RSA
with large e and large n. Is this method secure? If not, describe the most efficient at-
tack against this encryption method.
Using a spreadsheet (such as Excel) or a calculator, perform the operations described
below. Document results of all intermediate modular multiplications. Determine a
number of modular multiplications per each major transformation (such as encryp-
tion, decryption, primality testing, etc.).

Test all odd numbers in the range from 233 to 241 for primality using the Miller-

Rabin test with base 2.

Encrypt the message block M = 2 using RSA with the following parameters:e = 23

andn = 233 X 241.

Compute a private key (d, p, q) corresponding to the given above public key (e, n).

281

Perform the decryption of the obtained ciphertext
without using the Chinese Remainder Theorem, and
using the Chinese Remainder Theorem.

Assume that you generate an authenticated and encrypted message by first applying
the RSA transformation determined by your private key, and then enciphering the
message using recipient’s public key (note that you do NOT use hash function before
the first transformation). Will this scheme work correctly [i.e., give the possibility to re-
construct the original message at the recipient’s side, for all possible relations between
the sender’s modulus ng and the recipient’s modulus ng (ng > ng, ng < ng, ns = ng)|?
Explain your answer. In case your answer is “no,” how would you correct this scheme?

“I want to tell you, Holmes,” Dr. Watson’s voice was enthusiastic, “that your recent
activities in network security have increased my interest in cryptography. And just
yesterday I found a way to make one-time pad encryption practical.”

“Oh, really?” Holmes’ face lost its sleepy look.

“Yes, Holmes. The idea is quite simple. For a given one-way function F, I gener-
ate a long pseudorandom sequence of elements by applying F to some standard se-
quence of arguments. The cryptanalyst is assumed to know F and the general nature
of the sequence, which may be as simple as S, S + 1,S + 2, ..., but not secret S. And
due to the one-way nature of F, no one is able to extract S given F(S + i) for some
i, thus even if he somehow obtains a certain segment of the sequence, he will not be
able to determine the rest.”

“I am afraid, Watson, that your proposal isn’t without flaws and at least it needs
some additional conditions to be satisfied by F. Let’s consider, for instance, the RSA
encryption function, that is F(M) = MX mod N, K is secret. This function is believed
to be one-way, but I wouldn’t recommend its use, for example, on the sequence
M=23,4,56,.."

“But why, Holmes?” Dr. Watson apparently didn’t understand. “Why do you
think that the resulting sequence 2X mod N, 3X mod N, 4€ mod N, ...is not appropri-
ate for one-time pad encryption if K is kept secret?”

“Because it is—at least partially—predictable, dear Watson, even if K is kept
secret. You have said that the cryptanalyst is assumed to know F and the general
nature of the sequence. Now let’s assume that he will obtain somehow a short segment
of the output sequence. In crypto circles, this assumption is generally considered to be a
viable one. And for this output sequence, knowledge of just the first two elements will
allow him to predict quite a lot of the next elements of the sequence, even if not all of
them, thus this sequence can’t be considered to be cryptographically strong. And with
the knowledge of a longer segment he could predict even more of the next elements
of the sequence. Look, knowing the general nature of the sequence and its first two
elements 2X mod N and 3% mod N, you can easily compute its following elements.”

Show how this can be done.

Show how RSA can be represented by matrices M1, M2, and M3 of Problem 9.1.

Consider the following scheme:
Pick an odd number, E.
Pick two prime numbers, P and Q,where (P — 1)(Q — 1) —1is evenly divisible by E.
Multiply P and Q to get N.

P-1DQ@-1(E-1)+1
E

Calculate D =

Is this scheme equivalent to RSA? Show why or why not.

Consider the following scheme by which B encrypts a message for A.
A chooses two large primes P and Q that are also relatively prime to (P — 1)
and (Q — 1).
A publishes N = PQ as its public key.

282

A calculates P'and Q' such that PP’ = 1 (mod Q — 1)and QQ’' = 1 (mod P — 1).
B encrypts message M as C = MY mod N.
A finds M by solving M = C* (mod Q) and M = C2 (mod P).

Explain how this scheme works.

How does it differ from RSA?

Is there any particular advantage to RSA compared to this scheme?

Show how this scheme can be represented by matrices M1,M2,and M3 of Problem 9.1.

“This is a very interesting case, Watson,” Holmes said. “The young man loves a girl,
and she loves him too. However, her father is a strange fellow who insists that his
would-be son-in-law must design a simple and secure protocol for an appropriate
public-key cryptosystem he could use in his company’s computer network. The young
man came up with the following protocol for communication between two parties.
For example, user A wishing to send message M to user B: (messages exchanged are
in the format sender’s name, text, receiver’s name)”

A sends B the following block: (A, E(PU,, [M, A]), B).

B acknowledges receipt by sending to A the following block: (B, E(PU,, [M, B)]), A).
“You can see that the protocol is really simple. But the girl’s father claims that the
young man has not satisfied his call for a simple protocol, because the proposal con-
tains a certain redundancy and can be further simplified to the following:”

A sends B the block: (A, E(PUy, M), B).

B acknowledges receipt by sending to A the block: (B, E(PU,, M), A).
“On the basis of that, the girl’s father refuses to allow his daughter to marry the
young man, thus making them both unhappy. The young man was just here to ask me
for help.”

“Hmm, I don’t see how you can help him.” Watson was visibly unhappy with the
idea that the sympathetic young man has to lose his love.

“Well, I think I could help. You know, Watson, redundancy is sometimes good to
ensure the security of protocol. Thus, the simplification the girl’s father has proposed
could make the new protocol vulnerable to an attack the original protocol was able
to resist,” mused Holmes. “Yes, it is so, Watson. Look, all an adversary needs is to
be one of the users of the network and to be able to intercept messages exchanged
between A and B. Being a user of the network, he has his own public encryption key
and is able to send his own messages to A or to B and to receive theirs. With the help
of the simplified protocol, he could then obtain message M user A has previously sent
to B using the following procedure:”

Complete the description.

Use the fast exponentiation algorithm of Figure 9.8 to determine 5%% mod 1234.
Show the steps involved in the computation.
Here is another realization of the fast exponentiation algorithm. Demonstrate that it
is equivalent to the one in Figure 9.8.

f < 1; T «< a; E < b

if odd(e) then £ «— £ X T

E <« [E/2 1]

T <« TXT

if E > 0 then goto 2

output £
The problem illustrates a simple application of the chosen ciphertext attack. Bob
intercepts a ciphertext C intended for Alice and encrypted with Alice’s public key e.
Bob wants to obtain the original message M = C? mod n. Bob chooses a random
value r less than » and computes

Z =r°modn
X =ZCmodn
t=r"'modn

283

Next, Bob gets Alice to authenticate (sign) X with her private key (as in Figure 9.3),
thereby decrypting X. Alice returns ¥ = X mod n. Show how Bob can use the infor-
mation now available to him to determine M.
Show the OAEP decoding operation used for decryption that corresponds to the
encoding operation of Figure 9.10.
Improve on algorithm P1 in Appendix 9A.
Develop an algorithm that requires 2z multiplications and n + 1 additions. Hint:
X =¥ X x.
Develop an algorithm that requires only # + 1 multiplications and » + 1 additions.
Hint: P(x) = ag + x X q(x), where g(x) is a polynomial of degree (n — 1).
Note: The remaining problems concern the knapsack public-key algorithm described
in Appendix J.
What items are in the knapsack in Figure F.1?

Perform encryption and decryption using the knapsack algorithm for the following:
"'=(1,3,5,10);w = 7;m = 20;x = 1101

(1,3,5,11,23, 46, 136,263); w = 203; m = 491;x = 11101000
(2,3,6,12,25);w = 46;m = 53;x = 11101

(15,92, 108,279,563, 1172,2243,4468); w = 2393; m = 9291;x = 10110001

!
!
’

a
a
a
a

n
Why is it a requirement that m > > a’;?
i=1

The central issue in assessing the resistance of an encryption algorithm to crypt-
analysis is the amount of time that a given type of attack will take. Typically, one
cannot be sure that one has found the most efficient attack algorithm. The most that
one can say is that, for a particular algorithm, the level of effort for an attack is of
a particular order of magnitude. One can then compare that order of magnitude to
the speed of current or predicted processors to determine the level of security of a
particular algorithm.

A common measure of the efficiency of an algorithm is its time complexity.
We define the time complexity of an algorithm to be f(n) if, for all » and all inputs
of length n, the execution of the algorithm takes at most f(n) steps. Thus, for a given
size of input and a given processor speed, the time complexity is an upper bound on
the execution time.

There are several ambiguities here. First, the definition of a step is not precise.
A step could be a single operation of a Turing machine, a single processor machine in-
struction, a single high-level language machine instruction, and so on. However, these
various definitions of step should all be related by simple multiplicative constants. For
very large values of n, these constants are not important. What is important is how
fast the relative execution time is growing. For example, if we are concerned about
whether to use 50-digit (n = 10°°) or 100-digit (n = 10'%°) keys for RSA,, it is not nec-
essary (or really possible) to know exactly how long it would take to break each size
of key. Rather, we are interested in ballpark figures for level of effort and in knowing
how much extra relative effort is required for the larger key size.

A second issue is that, generally speaking, we cannot pin down an exact for-
mula for f(n). We can only approximate it. But again, we are primarily interested in
the rate of change of f(n) as n becomes very large.

284

There is a standard mathematical notation, known as the “big-O” notation,
for characterizing the time complexity of algorithms that is useful in this context.
The definition is as follows: f(n) = O(g(n)) if and only if there exist two numbers a
and M such that

i(m)] = a < [gm)]. n=M ©:3)

An example helps clarify the use of this notation. Suppose we wish to evaluate

a general polynomial of the form

P(x) = ax" + a,_ X" '+ - + ax + ag
The following simple algorithm is from [POHLS1].

algorithm P1;
n, i1, j: integer; x, polyval: real;
a, S: array [0..100] of real;

begin
read(x, n);
for i := 0 upto n do
begin
S[i] := 1; read(alil);
for j := 1 upto i do S[i] := x X S[i];
S[i] := ali] X S[i]
end;
polyval := 0;
for i := 0 upto n do polyval := polyval + S[i];
write (‘wvalue at’, x, ’is’, polyval)
end.

In this algorithm, each subexpression is evaluated separately. Each S[i]
requires (i + 1) multiplications: i multiplications to compute S[i] and one to multi-
ply by a[i]. Computing all n terms requires

u n+2)n+1
Sty DD
=0 2

multiplications. There are also (n + 1) additions, which we can ignore relative
to the much larger number of multiplications. Thus, the time complexity of this
algorithm is f(n) = (n + 2)(n + 1)/2. We now show that f(n) = O(n?). From the def-
inition of Equation (9.3), we want to show that for @« = 1 and M = 4 the relationship
holds for g(n) = n>. We do this by induction on n. The relationship holds for n = 4
because (4 + 2) (4 + 1)/2 = 15 < 4> = 16. Now assume that it holds for all values of
nupto k [ie., (k + 2)(k + 1)/2 < k?]. Then, with n = k + 1,
(n+2)(n+1) (k+3)(k+2)
2 a 2
_(k+2)(k+ 1) N
a 2
=k*+k+2
=k +2k+1=(k+1)7>=n

k+2

Therefore, the result is true forn = k + 1.

285

In general, the big-O notation makes use of the term that grows the fastest.
For example,

O[ax” + 3x3 + sin(x)] = O(ax”) = O(x")
O(e" + an'®) = O(e")
o®n! + % = 0(n!)

There is much more to the big-O notation, with fascinating ramifications. For
the interested reader, two of the best accounts are in [GRAH94] and [KNUT97].
An algorithm with an input of size # is said to be

Linear: If the running time is O(n)
Polynomial: If the running time is O(n") for some constant ¢

Exponential: If the running time is O(zh(”)) for some constant ¢ and
polynomial h(n)

Generally, a problem that can be solved in polynomial time is considered fea-
sible, whereas anything worse than polynomial time, especially exponential time, is
considered infeasible. But you must be careful with these terms. First, if the size of
the input is small enough, even very complex algorithms become feasible. Suppose,
for example, that you have a system that can execute 10'? operations per unit time.
Table 9.6 shows the size of input that can be handled in one time unit for algorithms
of various complexities. For algorithms of exponential or factorial time, only very
small inputs can be accommodated.

The second thing to be careful about is the way in which the input is character-
ized. For example, the complexity of cryptanalysis of an encryption algorithm can
be characterized equally well in terms of the number of possible keys or the length
of the key. For the Advanced Encryption Standard (AES), for example, the number
of possible keys is 2!%8, and the length of the key is 128 bits. If we consider a single
encryption to be a “step” and the number of possible keys to be N = 2", then the
time complexity of the algorithm is linear in terms of the number of keys [O(/N)] but
exponential in terms of the length of the key [O(2")].

Level of Effort for Various Levels of Complexity

Complexity Size Operations
logyn 2102 _ 310" 102
N 10'? 10'2
n? 106 10'?
n® 10? 10'2
27 39 10'2
n! 15 102

CHAPTER

OTHER PuUBLIC-KEY
CRYPTOSYSTEMS

10.1

10.2
10.3

10.4

10.5

10.6
10.7

286

Diffie-Hellman Key Exchange

The Algorithm
Key Exchange Protocols
Man-in-the-Middle Attack

Elgamal Cryptographic System
Elliptic Curve Arithmetic

Abelian Groups

Elliptic Curves over Real Numbers
Elliptic Curves over Z,

Elliptic Curves over GF(2™)

Elliptic Curve Cryptography

Analog of Diffie-Hellman Key Exchange
Elliptic Curve Encryption/Decryption
Security of Elliptic Curve Cryptography

Pseudorandom Number Generation Based on an Asymmetric Cipher

PRNG Based on RSA
PRNG Based on Elliptic Curve Cryptography

Recommended Reading

Key Terms, Review Questions, and Problems

287

Amongst the tribes of Central Australia every man, woman, and child has a secret
or sacred name which is bestowed by the older men upon him or her soon after
birth, and which is known to none but the fully initiated members of the group. This
secret name is never mentioned except upon the most solemn occasions; to utter it
in the hearing of men of another group would be a most serious breach of tribal
custom. When mentioned at all, the name is spoken only in a whisper, and not until
the most elaborate precautions have been taken that it shall be heard by no one but
members of the group. The native thinks that a stranger knowing his secret name
would have special power to work him ill by means of magic.

— The Golden Bough, Sir James George Frazer

LEARNING OBJECTIVES

After studying this chapter, you should be able to:
Define Diffie-Hellman key exchange.

Understand the man-in-the-middle attack.

Present an overview of the Elgamal cryptographic system.
Understand elliptic curve arithmetic.

Present an overview of elliptic curve cryptography.

Present two techniques for generating pseudorandom numbers using an
asymmetric cipher.

This chapter begins with a description of one of the earliest and simplest PKCS: Diffie-
Hellman key exchange. The chapter then looks at another important scheme, the
Elgamal PKCS. Next, we look at the increasingly important PKCS known as elliptic
curve cryptography. Finally, the use of public-key algorithms for pseudorandom num-
ber generation is examined.

The first published public-key algorithm appeared in the seminal paper by Diffie
and Hellman that defined public-key cryptography [DIFF76b] and is generally
referred to as Diffie-Hellman key exchange.! A number of commercial products
employ this key exchange technique.

The purpose of the algorithm is to enable two users to securely exchange a
key that can then be used for subsequent symmetric encryption of messages. The
algorithm itself is limited to the exchange of secret values.

'Williamson of Britain’s CESG published the identical scheme a few months earlier in a classified docu-
ment [WILL76] and claims to have discovered it several years prior to that; see [ELLI99] for a discussion.

288

CHAPTER 10 / OTHER PUBLIC-KEY CRYPTOSYSTEMS

The Diffie-Hellman algorithm depends for its effectiveness on the difficulty of
computing discrete logarithms. Briefly, we can define the discrete logarithm in the
following way. Recall from Chapter 8 that a primitive root of a prime number p is
one whose powers modulo p generate all the integers from 1 to p — 1. That is, if a
is a primitive root of the prime number p, then the numbers

amodp,a’modp, ... ,a" 'modp

are distinct and consist of the integers from 1 through p — 1 in some permutation.
For any integer b and a primitive root a of prime number p, we can find a
unique exponent i such that

b = d'(mod p) where0 =i=<(p — 1)

The exponent i is referred to as the discrete logarithm of b for the base a, mod p.
We express this value as dlog,,(b). See Chapter 8 for an extended discussion of
discrete logarithms.

The Algorithm

Figure 10.1 summarizes the Diffie-Hellman key exchange algorithm. For this
scheme, there are two publicly known numbers: a prime number g and an integer «
that is a primitive root of g. Suppose the users A and B wish to create a shared key.

Alice
Alice and Bob share a Alice and Bob share a
prime number ¢ and an prime number ¢ and an
integer a, such that a < ¢ and integer a, such that o < g and
ais a primitive root of ¢ « is a primitive root of ¢
Alice generates a private Bob generates a private
key X4 such that X4 < ¢ i key Xp such that X < ¢
Alice calculates a public Bob calculates a public

key Y4 = oX4mod ¢ < B key Yp = oXBmod ¢

Alice receives Bob’s Bob receives Alice’s

public key Yp in plaintext public key Y4 in plaintext
Alice calculates shared Bob calculates shared
secret key K = (YB)XA mod g secret key K = (YA)XB mod g

< :
*J\

Figure 10.1 The Diffie-Hellman Key Exchange

|

289

User A selects a random integer X, < g and computes Y, = a®modg.
Similarly, user B independently selects a random integer Xz < g and computes
Yz = a®*modgq. Each side keeps the X value private and makes the Y value avail-
able publicly to the other side. Thus, X4 is A’s private key and Y 4 is A’s correspond-
ing public key, and similarly for B. User A computes the key as K = (Yz)**modgq
and user B computes the key as K = (Y,4)** mod g. These two calculations produce
identical results:

K = (Yz)* modq
= (a*modg)¥ mod ¢q
= (a®)*1mod ¢ by the rules of modular arithmetic
= o 1mod g
= (a®)*rmodg
= (o modq)**modgq
= (Y)**modq
The result is that the two sides have exchanged a secret value. Typically, this
secret value is used as shared symmetric secret key. Now consider an adversary who
can observe the key exchange and wishes to determine the secret key K. Because X4
and Xp are private, an adversary only has the following ingredients to work with: g, «,

Y4, and Y. Thus, the adversary is forced to take a discrete logarithm to determine the
key. For example, to determine the private key of user B, an adversary must compute

Xp = dlog,((Ys)

The adversary can then calculate the key K in the same manner as user B calculates
it. That is, the adversary can calculate K as

K = (Y4)**modgq

The security of the Diffie-Hellman key exchange lies in the fact that, while
it is relatively easy to calculate exponentials modulo a prime, it is very difficult
to calculate discrete logarithms. For large primes, the latter task is considered
infeasible.

Here is an example. Key exchange is based on the use of the prime number
g = 353 and a primitive root of 353, in this case &« = 3. A and B select private keys
X, = 97 and Xp = 233, respectively. Each computes its public key:

A computes Y, = 3%’ mod 353 = 40.

B computes Yz = 32** mod 353 = 248.
After they exchange public keys, each can compute the common secret key:

A computes K = (Yz)**mod 353 = 248" mod 353 = 160.
B computes K = (Y,)**mod 353 = 40> mod 353 = 160.

We assume an attacker would have available the following information:

g =353, =3;Y, =40, Yy = 248

290

In this simple example, it would be possible by brute force to determine the secret
key 160. In particular, an attacker E can determine the common key by discover-
ing a solution to the equation 3* mod 353 = 40 or the equation 3” mod 353 = 248.
The brute-force approach is to calculate powers of 3 modulo 353, stopping when
the result equals either 40 or 248. The desired answer is reached with the exponent
value of 97, which provides 3°” mod 353 = 40.

With larger numbers, the problem becomes impractical.

Figure 10.1 shows a simple protocol that makes use of the Diffie-Hellman calcula-
tion. Suppose that user A wishes to set up a connection with user B and use a secret
key to encrypt messages on that connection. User A can generate a one-time pri-
vate key X}, calculate Y,, and send that to user B. User B responds by generating
a private value Xj, calculating Yp, and sending Yj to user A. Both users can now
calculate the key. The necessary public values g and « would need to be known
ahead of time. Alternatively, user A could pick values for g and « and include those
in the first message.

As an example of another use of the Diffie-Hellman algorithm, suppose that a
group of users (e.g., all users on a LAN) each generate a long-lasting private value
X; (for user i) and calculate a public value Y;. These public values, together with
global public values for g and «, are stored in some central directory. At any time,
user j can access user i’s public value, calculate a secret key, and use that to send
an encrypted message to user A. If the central directory is trusted, then this form
of communication provides both confidentiality and a degree of authentication.
Because only i and j can determine the key, no other user can read the message
(confidentiality). Recipient i knows that only user j could have created a message
using this key (authentication). However, the technique does not protect against
replay attacks.

The protocol depicted in Figure 10.1 is insecure against a man-in-the-middle attack.
Suppose Alice and Bob wish to exchange keys, and Darth is the adversary. The
attack proceeds as follows (Figure 10.2).

Darth prepares for the attack by generating two random private keys Xp; and
Xp, and then computing the corresponding public keys Yy and Yp,.

Alice transmits Y, to Bob.

Darth intercepts Y, and transmits Yp; to Bob. Darth also calculates
K2 = (Y,)*»mod q.

Bob receives Yj; and calculates K1 = (Yp;)** mod q.

Bob transmits Yz to Alice.

Darth intercepts Yz and transmits Yp, to Alice. Darth calculates
K1 = (Y)*"*mod q.

Alice receives Y, and calculates K2 = (Yp,)** mod q.

10.1 / DIFFIE-HELLMAN KEY EXCHANGE 291

Alice

Private key X4
Public key
Y4 =aXAmod ¢ ?
Y4
Private keys Xpj7, Xp»
Public keys
Ypr = oXpImod q
Ypy = oXp2mod q
Y2 Ypi
Secret key Secret key Private key Xp
K2 = (Ypy)*4Amod ¢ K2 = (Y4)*p2mod ¢ Public key
? Yp= oXBmod q
Yp
Secret key Secret key
KI = (Yp)Xpimod ¢ KI = (Yp7)XBmod ¢
Alice and Darth Bob and Darth
share K2 [1] share K1 J

| [

Figure 10.2 Man-in-the-Middle Attack

At this point, Bob and Alice think that they share a secret key, but instead
Bob and Darth share secret key K1 and Alice and Darth share secret key K2. All
future communication between Bob and Alice is compromised in the following way.

1. Alice sends an encrypted message M: E(K2, M).
2. Darth intercepts the encrypted message and decrypts it to recover M.

3. Darth sends Bob E(K1, M) or E(K1, M), where M’ is any message. In the
first case, Darth simply wants to eavesdrop on the communication without
altering it. In the second case, Darth wants to modify the message going to Bob.

The key exchange protocol is vulnerable to such an attack because it does
not authenticate the participants. This vulnerability can be overcome with the
use of digital signatures and public-key certificates; these topics are explored in
Chapters 13 and 14.

292 CHAPTER 10 / OTHER PUBLIC-KEY CRYPTOSYSTEMS

10.2 ELGAMAL CRYPTOGRAPHIC SYSTEM

In 1984, T. Elgamal announced a public-key scheme based on discrete logarithms,
closely related to the Diffie-Hellman technique [ELGA84, ELGAS5]. The Elgamal®
cryptosystem is used in some form in a number of standards including the digital
signature standard (DSS), which is covered in Chapter 13, and the S/MIME e-mail
standard (Chapter 19).

As with Diffie-Hellman, the global elements of Elgamal are a prime number

q and «, which is a primitive root of q. User A generates a private/public key pair
as follows:

1.
2.
3.

Generate a random integer X4, such that 1 < X, < g — 1.
Compute Y4 = o mod q.
A’s private key is X4 and A’s public key is {q, a, Y,}.

Any user B that has access to A’s public key can encrypt a message as follows:

. Represent the message as an integer M in the range 0 < M =< g — 1. Longer

messages are sent as a sequence of blocks, with each block being an integer
less than q.

. Choose a random integer k such that 1 = k < q — 1.
. Compute a one-time key K = (Y,)* mod q.

Encrypt M as the pair of integers (Cy, C,) where
C, = o*mod g; C, = KM mod ¢
User A recovers the plaintext as follows:

Recover the key by computing K = (C;)* mod q.

2. Compute M = (C,K ') mod g.

These steps are summarized in Figure 10.3. It corresponds to Figure 9.1a:

Alice generates a public/private key pair; Bob encrypts using Alice’s public key; and
Alice decrypts using her private key.

Let us demonstrate why the Elgamal scheme works. First, we show how K is

recovered by the decryption process:

K = (Y4)*mod ¢ K is defined during the encryption process
K = (o mod g)* mod ¢ substitute using Y, = 4 mod ¢

K = o+ mod ¢q by the rules of modular arithmetic

K = (C))* mod q substitute using C; = of mod ¢

Next, using K, we recover the plaintext as
C, = KM mod ¢q
(C;KHYmodq = KMK 'modg = Mmodgq = M

2For no apparent reason, most of the literature uses the term ElGamal, although Mr. Elgamal’s last name
does not have a capital letter G.

293

Global Public Elements

q prime number

« a < g and « a primitive root of g
Key Generation by Alice

Select private X4 X, <qg-—-1

Calculate Y, Yy = a® mod g

Public key {q,a, Y4}

Private key X4

Encryption by Bob with Alice’s Public Key

Plaintext: M <q

Select random integer k k<gq

Calculate K K = (Y,)* mod ¢
Calculate C; C, = &*mod g
Calculate C, C, = KM mod g
Ciphertext: (C1, &)

Decryption by Alice with Alice’s Private Key

Ciphertext: (C1, &)
Calculate K K = (C))* mod g
Plaintext: M = (C,K) mod g

The Elgamal Cryptosystem

We can restate the Elgamal process as follows, using Figure 10.3.

Bob generates a random integer k.

Bob generates a one-time key K using Alice’s public-key components Y, g,

and k.

Bob encrypts k using the public-key component «, yielding C;. C; provides

sufficient information for Alice to recover K.

Bob encrypts the plaintext message M using K.

Alice recovers K from C; using her private key.

Alice uses K™ to recover the plaintext message from C,.

294

Thus, K functions as a one-time key, used to encrypt and decrypt the
message.

For example, let us start with the prime field GF(19); that is, ¢ = 19. It has
primitive roots {2, 3, 10, 13, 14, 15}, as shown in Table 8.3. We choose a = 10.

Alice generates a key pair as follows:

Alice chooses X, = 5.
Then Y, = a® modgq = o mod 19 = 3 (see Table 8.3).
Alice’s private key is 5 and Alice’s public key is {q, «, Y1} = {19, 10, 3}.

Suppose Bob wants to send the message with the value M = 17. Then:

Bob chooses k = 6.

Then K = (Y,)*mod g = 3®mod 19 = 729 mod 19 = 7
So

C, =a*modg = a®mod 19 = 11

C,= KMmodg =7 X17mod 19 = 119 mod 19 = 5
Bob sends the ciphertext (11, 5).

For decryption:

Alice calculates K = (C;)** mod ¢ = 11° mod 19 = 161051 mod 19 = 7.

Then K !in GF(19) is 7' mod 19 = 11.

Finally, M = (C,K)Y mod g = 5 X 11 mod 19 = 55mod 19 = 17.

If a message must be broken up into blocks and sent as a sequence of encrypted
blocks, a unique value of k should be used for each block. If k is used for more than

one block, knowledge of one block M; of the message enables the user to compute
other blocks as follows. Let

Cl,l = Olk mod q, C2,1 = KMl mod q
C1,2

of mod gq; C,, = KM, mod g
Then,
C1 KMymodg M;modg
Cz’z B KM2 mod q B M2 mod q

If M, is known, then M, is easily computed as
My = (Cp1)™" C3p Mymod g

The security of Elgamal is based on the difficulty of computing discrete
logarithms. To recover A’s private key, an adversary would have to compute
X, = dlog,,(Y,). Alternatively, to recover the one-time key K, an adversary
would have to determine the random number k, and this would require computing
the discrete logarithm k = dlog, ,(C;). [STIN06] points out that these calculations
are regarded as infeasible if p is at least 300 decimal digits and ¢ — 1 has at least
one “large” prime factor.

10.3 / ELLIPTIC CURVE ARITHMETIC 295

10.3 ELLIPTIC CURVE ARITHMETIC

Most of the products and standards that use public-key cryptography for encryption
and digital signatures use RSA. As we have seen, the key length for secure RSA
use has increased over recent years, and this has put a heavier processing load on
applications using RSA. This burden has ramifications, especially for electronic com-
merce sites that conduct large numbers of secure transactions. A competing system
challenges RSA: elliptic curve cryptography (ECC). ECC is showing up in standard-
ization efforts, including the IEEE P1363 Standard for Public-Key Cryptography.

The principal attraction of ECC, compared to RSA, is that it appears to offer
equal security for a far smaller key size, thereby reducing processing overhead. On
the other hand, although the theory of ECC has been around for some time, it is
only recently that products have begun to appear and that there has been sustained
cryptanalytic interest in probing for weaknesses. Accordingly, the confidence level
in ECC is not yet as high as that in RSA.

ECC is fundamentally more difficult to explain than either RSA or Diffie-
Hellman, and a full mathematical description is beyond the scope of this book.
This section and the next give some background on elliptic curves and ECC. We
begin with a brief review of the concept of abelian group. Next, we examine the
concept of elliptic curves defined over the real numbers. This is followed by a look
at elliptic curves defined over finite fields. Finally, we are able to examine elliptic
curve ciphers.

The reader may wish to review the material on finite fields in Chapter 4 before
proceeding.

Abelian Groups

Recall from Chapter 4 that an abelian group G, sometimes denoted by {G, -}, is
a set of elements with a binary operation, denoted by -, that associates to each
ordered pair (a, b) of elements in G an element (a - b) in G, such that the following
axioms are obeyed:

(A1) Closure: If a and b belong to G, then a- b is also in G.

(A2) Associative: a+(b-c) = (a-b)-cforalla,b,cinG.

(A3) Identity element: There is an element e in G such thata-e = e-a = a
forallain G.

(A4) Inverse element: For each a in G there is an element a’ in G such that
a-a’' =a'-a=-ce.

(A5) Commutative: a*b=>b-aforalla,binG.

A number of public-key ciphers are based on the use of an abelian group.

For example, Diffie-Hellman key exchange involves multiplying pairs of nonzero
integers modulo a prime number q. Keys are generated by exponentiation over

3The operator - is generic and can refer to addition, multiplication, or some other mathematical operation.

296

the group, with exponentiation defined as repeated multiplication. For example,
a*mod q = ga X a X ... X a)mod q. To attack Diffie-Hellman, the attacker must

k times
determine k given a and a; this is the discrete logarithm problem.
For elliptic curve cryptography, an operation over elliptic curves, called addi-
tion, is used. Multiplication is defined by repeated addition. For example,

axXk=@+a+...+a)

k times

where the addition is performed over an elliptic curve. Cryptanalysis involves deter-
mining k given a and (a X k).

An elliptic curve is defined by an equation in two variables with coefficients.
For cryptography, the variables and coefficients are restricted to elements in a finite
field, which results in the definition of a finite abelian group. Before looking at this,
we first look at elliptic curves in which the variables and coefficients are real num-
bers. This case is perhaps easier to visualize.

Elliptic curves are not ellipses. They are so named because they are described by
cubic equations, similar to those used for calculating the circumference of an ellipse.
In general, cubic equations for elliptic curves take the following form, known as a
Weierstrass equation:

v+ axy + by = x>+ cx’ +dx + e

where a, b, c, d, e are real numbers and x and y take on values in the real numbers.*
For our purpose, it is sufficient to limit ourselves to equations of the form

V=x+ax+b (10.1)

Such equations are said to be cubic, or of degree 3, because the highest
exponent they contain is a 3. Also included in the definition of an elliptic curve is a
single element denoted O and called the point at infinity or the zero point, which we
discuss subsequently. To plot such a curve, we need to compute

y=Vx+ax+b

For given values of a and b, the plot consists of positive and negative values of y for
each value of x. Thus, each curve is symmetric about y = 0. Figure 10.4 shows two
examples of elliptic curves. As you can see, the formula sometimes produces weird-
looking curves.

Now, consider the set of points E(a, b) consisting of all of the points (x, y) that
satisfy Equation (10.1) together with the element O. Using a different value of the
pair (a, b) results in a different set E(a, b). Using this terminology, the two curves in
Figure 10.4 depict the sets E(—1, 0) and E(1, 1), respectively.

“Note that x and y are true variables, which take on values. This is in contrast to our discussion of polyno-
mial rings and fields in Chapter 4, where x was treated as an indeterminate.

10.3 / ELLIPTIC CURVE ARITHMETIC 297

b)Y =x +x+1

Figure 10.4 Example of Elliptic Curves

GEOMETRIC DESCRIPTION OF ApprTion It can be shown that a group can be defined
based on the set E(qa, b) for specific values of a and b in Equation (10.1), provided
the following condition is met:

40> + 27b* # 0 10.2)

To define the group, we must define an operation, called addition and denoted by
+, for the set E(a, b), where a and b satisfy Equation (10.2). In geometric terms, the
rules for addition can be stated as follows: If three points on an elliptic curve lie on a
straight line, their sum is O. From this definition, we can define the rules of addition
over an elliptic curve.

298

O serves as the additive identity. Thus O = —O; for any point P on the elliptic
curve, P + O = P. In what follows, we assume P # O and Q # O.

The negative of a point P is the point with the same x coordinate but the nega-
tive of the y coordinate;thatis,if P = (x, y),then —P = (x, —y). Note that these
two points can be joined by a vertical line. Note that P + (—=P) = P — P = O.

To add two points P and Q with different x coordinates, draw a straight line
between them and find the third point of intersection R. It is easily seen that
there is a unique point R that is the point of intersection (unless the line is
tangent to the curve at either P or Q, in which case we take R = Por R = Q,
respectively). To form a group structure, we need to define addition on these
three points: P + Q = —R.That is, we define P + Q to be the mirror image
(with respect to the x axis) of the third point of intersection. Figure 10.4 illus-
trates this construction.

The geometric interpretation of the preceding item also applies to two points,
P and —P, with the same x coordinate. The points are joined by a vertical line,
which can be viewed as also intersecting the curve at the infinity point. We
therefore have P + (—P) = O, which is consistent with item (2).

To double a point Q, draw the tangent line and find the other point of inter-
section S. Then Q + QO = 20 = —S§.

With the preceding list of rules, it can be shown that the set E(a, b) is an abe-
lian group.

In this subsection, we present some results
that enable calculation of additions over elliptic curves.’ For two distinct points,
P = (xp,yp) and Q = (xg, yp), that are not negatives of each other, the slope of the
line / that joins themis A = (yo — yp)/(xg — xp). There is exactly one other point
where / intersects the elliptic curve, and that is the negative of the sum of P and Q.
After some algebraic manipulation, we can express the sum R = P + Q as

xp = A2 — xp — X0
YR = —yp + A(xp — xg)

We also need to be able to add a point to itself: P + P = 2P = R. When
yp # 0, the expressions are

3x% + a2
XR = =r = _ZXP
2yp

3xb +a
YR = 3 (xp — xg) — yp
yp

(10.3)

(10.4)

Elliptic curve cryptography makes use of elliptic curves in which the variables and
coefficients are all restricted to elements of a finite field. Two families of elliptic
curves are used in cryptographic applications: prime curves over Z, and binary

SFor derivations of these results, see [KOBLY4] or other mathematical treatments of elliptic curves.

299

curves over GF(2"). For a prime curve over Z,, we use a cubic equation in which
the variables and coefficients all take on values in the set of integers from 0O through
p — 1 and in which calculations are performed modulo p. For a binary curve de-
fined over GF(2™), the variables and coefficients all take on values in GF(2") and
in calculations are performed over GF(2""). [FERN99] points out that prime curves
are best for software applications, because the extended bit-fiddling operations
needed by binary curves are not required; and that binary curves are best for hard-
ware applications, where it takes remarkably few logic gates to create a powerful,
fast cryptosystem. We examine these two families in this section and the next.

There is no obvious geometric interpretation of elliptic curve arithmetic over
finite fields. The algebraic interpretation used for elliptic curve arithmetic over real
numbers does readily carry over, and this is the approach we take.

For elliptic curves over Z,, as with real numbers, we limit ourselves to equa-
tions of the form of Equation (10.1), but in this case with coefficients and variables
limited to Z,:

y*mod p = (x* + ax + b) mod p (10.5)
For example, Equation (10.5) is satisfied fora = 1,b = 1,x =9,y = 7, p = 23:
7°mod 23 = (9® + 9 + 1) mod 23
49 mod 23 = 739 mod 23
3=3

Now consider the set E,(a, b) consisting of all pairs of integers (x, y) that sat-
isfy Equation (10.5), together with a point at infinity O. The coefficients a and b and
the variables x and y are all elements of Z,.

For example, let p = 23 and consider the elliptic curve y* = x* + x + 1.
In this case, a = b = 1. Note that this equation is the same as that of Figure 10.4b.
The figure shows a continuous curve with all of the real points that satisfy the equation.
For the set Ex3(1, 1), we are only interested in the nonnegative integers in the quad-
rant from (0, 0) through (p — 1, p — 1) that satisfy the equation mod p. Table 10.1
lists the points (other than O) that are part of E,5(1, 1). Figure 10.5 plots the points
of E»5(1, 1); note that the points, with one exception, are symmetric about y = 11.5.

Points (other than O) on the
Elliptic Curve E,;3 (1,1)

(0,1) (6,4) (12, 19)
(0,22) (6,19) (13,7)
1,7) (7,11) (13,16)
(1,16) (7,12) (17,3)
(3,10) 9,7) (17, 20)
(3,13) (9, 16) (18,3)
(4,0) (11,3) (18, 20)
(5,4) (11, 20) (19, 5)
(5,19) (12, 4) (19, 18)

300

CHAPTER 10 / OTHER PUBLIC-KEY CRYPTOSYSTEMS

22 @
21
20 L 0
19 L o @
18 @
17
16 —@ L @

O = N W kA NN 0O

o —e

L 4
1 23 45 6 7 8 91011 1213 14 1516 17 18 19 20 21 22
X

Figure 10.5 The Elliptic Curve E»3(1,1)

It can be shown that a finite abelian group can be defined based on the set

E,(a, b) provided that (x* + ax + b) mod p has no repeated factors. This is equiva-
lent to the condition

(4a® + 27b*) mod p # 0 mod p (10.6)

Note that Equation (10.6) has the same form as Equation (10.2).

The rules for addition over E ,(a, b), correspond to the algebraic technique de-

scribed for elliptic curves defined over real numbers. For all points P, Q € E (a, b):

1.
2.

P+ 0O=P

If P = (xp,yp), then P + (xp,—yp) = O. The point (xp,—yp) is the nega-
tive of P, denoted as —P. For example, in Ex(1, 1), for P = (13,7), we have
—P = (13, =7). But —7 mod 23 = 16. Therefore, —P = (13,16), which is also
in E23(1, 1)

- If P = (x,,y,) and Q = (xg,yp) with P # —Q,then R = P + Q = (xg, ¥g)

is determined by the following rules:

xg = (¥ — xp — xp) mod p

Yr = (AM(xp — xg) — yp) mod p

301

where

Yo — yp .

() modp ifP # Q
XQ - Xp

A =

3x% + a

<> modp ifP =0

2yp

Multiplication is defined as repeated addition; for example, 4P =
P+P+ P+ P

For example, let P = (3, 10) and Q = (9, 7) in Ex(1,1). Then

7 —10 -3 -1
A= (9_3)mod 23 = <6>mod 23 = <2)mod 23 =11

xg = (12 = 3 = 9)mod 23 = 109 mod 23 = 17
yr = (11(3 — 17) — 10) mod 23 = —164 mod 23 = 20
So P + Q = (17,20). To find 2P,

A—<3(32)+1> d23—(5) d23—(1> d23 =6
“\ 2 x10)TN T\ gm0 T gm0 T

The last step in the preceding equation involves taking the multiplicative in-
verse of 4 in Z,3. This can be done using the extended Euclidean algorithm defined
in Section 4.4. To confirm, note that (6 X 4) mod 23 = 24 mod 23 = 1.

xg = (62— 3 —3)mod23 = 30mod23 =7
yr = (6(3 —7) — 10) mod 23 = (—34) mod 23 = 12
and 2P = (7,12).
For determining the security of various elliptic curve ciphers, it is of some in-

terest to know the number of points in a finite abelian group defined over an elliptic
curve. In the case of the finite group Ep(a, b), the number of points N is bounded by

p+1-2Vp=N=p+1+2Vp

Note that the number of points in E,(a, b) is approximately equal to the number of
elements in Z,, namely p elements.

Recall from Chapter 4 that a finite field GF(2") consists of 2" elements, together
with addition and multiplication operations that can be defined over polynomials.
For elliptic curves over GF(2™), we use a cubic equation in which the variables and
coefficients all take on values in GF(2") for some number m and in which calcula-
tions are performed using the rules of arithmetic in GF(2"™).

It turns out that the form of cubic equation appropriate for cryptographic ap-
plications for elliptic curves is somewhat different for GF(2") than for Z,. The form is

V4+xy=x+a’+b (10.7)

302

Points (other than O) on the
Elliptic Curve E,«(g*, 1)

(0, 1) s, 8) &.8")
(1,8% (& e" ("8
(1,¢") () (" ¢%
(&% (g% 8" (8", 0)
(& &") &’ &") (g"%¢")

where it is understood that the variables x and y and the coefficients a and b are ele-
ments of GF(2") and that calculations are performed in GF(2™).

Now consider the set E,»(a, b) consisting of all pairs of integers (x, y) that sat-
isfy Equation (10.7), together with a point at infinity O.

For example, let us use the finite field GF(2*) with the irreducible polynomial
f(x) = x* + x + 1. This yields a generator g that satisfies f(g) = 0 with a value of
g* = g + 1, orin binary, g = 0010. We can develop the powers of g as follows.

g = 0001 g* = 0011 g8 = o101 g% = 1111
gt = 0010 g°> = 0110 g’ = 1010 g = 1101
g% = 0100 g% = 1100 g% = o111 g = 1001
2> = 1000 g’ = 1011 gt = 1110 g'® = 0001

For example, g° = (g*)(g) = (g + 1)(g) = g*> + g = 0110.
Now consider the elliptic curve y* + xy = x> + g%? + 1.In this case, a = g*
and b = g” = 1. One point that satisfies this equation is (g°, g°):

(€))7 + ()8 = (87 + (gH(&) + 1

f s =g+ g1

1100 + 0101 = 0001 + 1001 + 0001

1001 = 1001
Table 10.2 lists the points (other than O) that are part of E(g*, 1). Figure 10.6 plots
the points of E,«(g*, 1).

It can be shown that a finite abelian group can be defined based on the set
E,n(a, b), provided that b # 0. The rules for addition can be stated as follows. For
all points P, Q € E,n(a, b):

P+0O=P

If P = (xp,yp), then P + (xp,xp + yp) = O. The point (xp, xp + yp) is the
negative of P, which is denoted as —P.

If P=(xp,yp) and Q = (xp,y9) with P # —Q and P # Q, then
R = P + O = (xg, yg) is determined by the following rules:

xg =N+ A+xp+xp+a

YR = Mxp + xg) + xg + yp

10.4 / ELLIPTIC CURVE CRYPTOGRAPHY 303

(=]

=

w

o

5

00 oo o 0y 09

©

LS P R S ¥ N Y

09 09 O Og 09 00 0o O

oo

—

1 g g2 g3 g4 g5 g6 g7 g8 g‘) gIO gll g12 g13 gl4 0
X

Figure 10.6 The Elliptic Curve E,: (g%, 1)

where
Yo T yp
XQ + XP

4. If P = (xp, yp) then R = 2P = (xp, yr) is determined by the following rules:

g=NX+A+a
YR = Xp + (A + Dxg

where

A= Xxp+ —
P Xp

10.4 ELLIPTIC CURVE CRYPTOGRAPHY

The addition operation in ECC is the counterpart of modular multiplication in
RSA, and multiple addition is the counterpart of modular exponentiation. To form
a cryptographic system using elliptic curves, we need to find a “hard problem” cor-
responding to factoring the product of two primes or taking the discrete logarithm.

Consider the equation Q = kP where Q, P € Ep(a, b) and k < p. It is rela-
tively easy to calculate Q given k and P, but it is hard to determine k given Q and P.
This is called the discrete logarithm problem for elliptic curves.

We give an example taken from the Certicom Web site (www.certicom
.com). Consider the group E,3(9,17). This is the group defined by the equation
y*mod 23 = (x* + 9x + 17) mod 23. What is the discrete logarithm k of Q = (4, 5)
to the base P = (16, 5)? The brute-force method is to compute multiples of P until

www.certicom.com
www.certicom.com

304

Q is found. Thus,
P = (16,5); 2P = (20, 20); 3P = (14,14); 4P = (19,20); 5P = (13, 10);
6P = (7,3);7P = (8,7); 8P = (12,17);9P = (4,5)

Because 9P = (4,5) = Q, the discrete logarithm Q = (4,5) to the base
P = (16,5)is k = 9. In a real application, kK would be so large as to make the brute-
force approach infeasible.

In the remainder of this section, we show two approaches to ECC that give the
flavor of this technique.

Key exchange using elliptic curves can be done in the following manner. First pick
a large integer g, which is either a prime number p or an integer of the form 2™,
and elliptic curve parameters a and b for Equation (10.5) or Equation (10.7). This
defines the elliptic group of points E,(a, b). Next, pick a base point G = (x;, y;) in
E,(a, b) whose order is a very large value n. The order n of a point G on an elliptic
curve is the smallest positive integer n such that nG = 0 and G are parameters of
the cryptosystem known to all participants.

A key exchange between users A and B can be accomplished as follows
(Figure 10.7).

A selects an integer n 4 less than n. This is A’s private key. A then generates a
public key P4 = n4 X G; the public key is a point in E,(a, b).
B similarly selects a private key ng and computes a public key Pg.

A generates the secret key kK = ny X Pg. B generates the secret key
k = np X PA'

The two calculations in step 3 produce the same result because
nAXPB=nA><(nBXG)=nB><(nA><G)=nB><PA

To break this scheme, an attacker would need to be able to compute k given G
and kG, which is assumed to be hard.

As an example S take p = 211; E,(0,—4), which is equivalent to the curve
y>=x>—4;and G = (2,2). One can calculate that 240G = O. A’s private key
is ny = 121, so A’s public key is P4, = 121(2,2) = (115, 48). B’s private key is
ng = 203, so B’s public key is 203(2, 3) = (130, 203). The shared secret key is
121(130, 203) = 203(115, 48) = (161, 69).

Note that the secret key is a pair of numbers. If this key is to be used as a ses-
sion key for conventional encryption, then a single number must be generated. We
could simply use the x coordinates or some simple function of the x coordinate.

Several approaches to encryption/decryption using elliptic curves have been ana-
lyzed in the literature. In this subsection, we look at perhaps the simplest. The first
task in this system is to encode the plaintext message m to be sent as an (x, y) point P,,.

%Provided by Ed Schaefer of Santa Clara University.

305

Global Public Elements
E,(a,b) elliptic curve with parameters a, b, and g, where g is a
prime or an integer of the form 2"
G point on elliptic curve whose order is large value n
User A Key Generation
Select private 14 ny<n
Calculate public P4 Py=ny, xXG

User B Key Generation
Select private ng ng<n

Calculate public Pg Pp=ng X G

Calculation of Secret Key by User A

K=nA><PB

Calculation of Secret Key by User B

K:nBXPA

ECC Diffie-Hellman Key Exchange

It is the point P, that will be encrypted as a ciphertext and subsequently decrypted.
Note that we cannot simply encode the message as the x or y coordinate of a point,
because not all such coordinates are in E,(a, b); for example, see Table 10.1. Again,
there are several approaches to this encoding, which we will not address here, but
suffice it to say that there are relatively straightforward techniques that can be used.

As with the key exchange system, an encryption/decryption system requires a
point G and an elliptic group E,(a, b) as parameters. Each user A selects a private
key n,4 and generates a public key Py, = ny X G.

To encrypt and send a message P,, to B, A chooses a random positive integer k
and produces the ciphertext C,, consisting of the pair of points:

C,, = (kG, P, + kPp)

Note that A has used B’s public key Pg. To decrypt the ciphertext, B multiplies the
first point in the pair by B’s private key and subtracts the result from the second point:

Pm + kPB - nB(kG) = Pm + k(nBG) - nB(kG) = Pm

A has masked the message P,, by adding kPj to it. Nobody but A knows the
value of k, so even though P, is a public key, nobody can remove the mask kPg.
However, A also includes a “clue,” which is enough to remove the mask if one

306 CHAPTER 10 / OTHER PUBLIC-KEY CRYPTOSYSTEMS

Table 10.3 Comparable Key Sizes in Terms of Computational Effort
for Cryptanalysis (NIST SP-800-57)

Symmetric Key | Diffie-Hellman, Digital RSA ECC
Algorithms Signature Algorithm (size of n in bits) (modulus size in bits)
80 i]z 1%4 1024 160-223
112 1%,3218 2048 224-255
128 f]j(s)? 3072 256-383
192]f]z ;gio 7680 384-511
256 oo 15,360 512+

Note: L =size of public key, N =size of private key

knows the private key ng. For an attacker to recover the message, the attacker
would have to compute k given G and kG, which is assumed to be hard.

Let us consider a simple example. The global public elements are g = 257,
E,(a, b) = Eys7(0, —4), which is equivalent to the curve y>=x>—4;and G =
(2, 2). Bob’s private key is ng = 101, and his public key is Pg = ngG = 101(2, 2)
= (197, 167). Alice wishes to send a message to Bob that is encoded in the elliptic
point P, = (112, 26). Alice chooses random integer k = 41 and computes kG =
41(2,2) = (136, 128), kP = 41(197, 167) = (68, 84) and P,, + kPg = (112, 26)
+ (68, 84) = (246, 174). Alice sends the ciphertext C,,, = (Cy, C;) = {(136, 128),
(246, 174)} to Bob. Bob receives the ciphertext and computes C, — ngC; =
(246, 174) — 101(136, 128) = (246, 174) — (68, 84) = (112, 26).

Security of Elliptic Curve Cryptography

The security of ECC depends on how difficult it is to determine k given kP and P.
This is referred to as the elliptic curve logarithm problem. The fastest known tech-
nique for taking the elliptic curve logarithm is known as the Pollard rho method.
Table 10.3, from NIST SP800-57 (Recommendation for Key Management— Part 1:
General, July 2012), compares various algorithms by showing comparable key sizes
in terms of computational effort for cryptanalysis. As can be seen, a considerably
smaller key size can be used for ECC compared to RSA. Furthermore, for equal
key lengths, the computational effort required for ECC and RSA is comparable
[JURI97]. Thus, there is a computational advantage to using ECC with a shorter
key length than a comparably secure RSA.

10.5 PSEUDORANDOM NUMBER GENERATION BASED

ON AN ASYMMETRIC CIPHER

We noted in Chapter 7 that because a symmetric block cipher produces an appar-
ently random output, it can serve as the basis of a pseudorandom number generator
(PRNG). Similarly, an asymmetric encryption algorithm produces apparently random

307

output and can be used to build a PRNG. Because asymmetric algorithms are typically
much slower than symmetric algorithms, asymmetric algorithms are not used to gener-
ate open-ended PRING bit streams. Rather, the asymmetric approach is useful for creat-
ing a pseudorandom function (PRF) for generating a short pseudorandom bit sequence.

In this section, we examine two PRNG designs based on pseudorandom functions.

For a sufficient key length, the RSA algorithm is considered secure and is a good
candidate to form the basis of a PRNG. Such a PRNG, known as the Micali-Schnorr
PRNG [MICA91], is recommended in the ANSI standard X9.82 (Random Number
Generation) and in the ISO standard 18031 (Random Bit Generation).

The PRNG is illustrated in Figure 10.8. As can be seen, this PRNG has much the
same structure as the output feedback (OFB) mode used as a PRNG (see Figure 7.4b
and the portion of Figure 6.6a enclosed with a dashed box). In this case, the encryption
algorithm is RSA rather than a symmetric block cipher. Also, a portion of the output
is fed back to the next iteration of the encryption algorithm and the remainder of the
output is used as pseudorandom bits. The motivation for this separation of the output
into two distinct parts is so that the pseudorandom bits from one stage do not provide
input to the next stage. This separation should contribute to forward unpredictability.

We can define the PRNG as follows.

Setup Select p, g primes; n = pq;dp(n) = (p — 1)(g — 1). Select e such
that ged(e, ¢(n)) = 1. These are the standard RSA setup selections
(see Figure 9.5). In addition, let N = [log,n] + 1 (the bitlength of n).
Select r, k such that r + k = N.

Seed Select a random seed x; of bitlength r.
Generate Generate a pseudorandom sequence of length k X m using the loop
for i from 1 to m do
y; = x{_ymod n
x; = r most significant bits of y;

z; = k least significant bits of y;
Output The output sequence is z; || 22| - - . || zp-
Seed = x
nernk l nernk nernk

Y Y
Encrypt L Encrypt L Encrypt
e o o

y1 =xgmod n ¥, =x{ mod n y3=x; mod n

X1 =r most X3 =r most X3 =r most
significant bits significant bits significant bits
71 =k least 23 =k least 23 =k least
significant bits significant bits significant bits

Micali-Schnorr Pseudorandom Bit Generator

308

The parameters n, r, e, and k are selected to satisfy the following six
requirements.

1. n = pq n is chosen as the product of two primes to
have the cryptographic strength required
of RSA.

2. 1 <e < ¢(n);ged (e, ¢ (n)) =1 Ensures that the mapping s — s mod n is
1to1l.

3. re = 2N Ensures that the exponentiation requires a
full modular reduction.

4. r = 2 strength Protects against a cryptographic attacks.

5. k, r are multiples of 8 An implementation convenience.

6. k=8r+k=N All bits are used.

The variable strength in requirement 4 is defined in NIST SP 800-90 as fol-
lows: A number associated with the amount of work (that is, the number of opera-
tions) required to break a cryptographic algorithm or system; a security strength
is specified in bits and is a specific value from the set (112, 128, 192, 256) for this
Recommendation. The amount of work needed is 27",

There is clearly a tradeoff between r and k. Because RSA is computationally
intensive compared to a block cipher, we would like to generate as many pseudo-
random bits per iteration as possible and therefore would like a large value of k.
However, for cryptographic strength, we would like r to be as large as possible.

For example, if e = 3 and N = 1024, then we have the inequality 3r > 1024,
yielding a minimum required size for r of 683 bits. For r set to that size,
k = 341 bits are generated for each exponentiation (each RSA encryption).
In this case, each exponentiation requires only one modular squaring of a
683-bit number and one modular multiplication. That is, we need only calculate
(x; X (x? mod n)) mod n.

In this subsection, we briefly summarize a technique developed by the U.S. National
Security Agency (NSA) known as dual elliptic curve PRNG (DEC PRNG). This
technique is recommended in NIST SP 800-90, the ANSI standard X9.82, and the
ISO standard 18031. There has been some controversy regarding both the security
and efficiency of this algorithm compared to other alternatives (e.g., see [SCHO06],
[BROWO7]).

[SCHOO06] summarizes the algorithm as follows: Let P and Q be two known
points on a given elliptic curve. The seed of the DEC PRNG is a random integer
so€{0,1,...,#E(GF(p)) — 1}, where # E(GF(p)) denotes the number of points
on the curve. Let x denote a function that gives the x-coordinate of a point of
the curve. Let Isb(s) denote the i least significant bits of an integer s. The DEC
PRNG transforms the seed into the pseudorandom sequence of length 240k, k > 0,
as follows.

10.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 309

for 1 =1 to k do

Set s; < x(S;-; P)

Set r; <« 1lsby,, (x(s; Q))
end for

Return rq, ..., 1y

Given the security concerns expressed for this PRNG, the only motivation for
its use would be that it is used in a system that already implements ECC but does
not implement any other symmetric, asymmetric, or hash cryptographic algorithm
that could be used to build a PRNG.

10.6 RECOMMENDED READING

A quite readable treatment of elliptic curve cryptography is [ROSI99]; the emphasis is on
software implementation. Another readable, but rigorous, book is [HANKO04]. There are
also good but more concise descriptions in [KUMAU98], [STINO06], and [KOBL94]. Two inter-
esting survey treatments are [FERN99] and [JURI97].

FERN99 Fernandes, A. “Elliptic Curve Cryptography.” Dr. Dobb’s Journal, December
1999.

HANKO04 Hankerson, D.; Menezes, A.; and Vanstone, S. Guide to Elliptic Curve
Cryptography. New York: Springer, 2004.

JURI97 Jurisic, A., and Menezes, A. “Elliptic Curves and Cryptography.” Dr. Dobb’s
Journal, April 1997.

KOBL94 Koblitz, N. A Course in Number Theory and Cryptography. New York:
Springer-Verlag, 1994.

KUMA98 Kumanduri, R.,and Romero, C. Number Theory with Computer Applications.
Upper Saddle River, NJ: Prentice Hall, 1998.

ROSI99 Rosing, M. Implementing Elliptic Curve Cryptography. Greeenwich, CT:
Manning Publications, 1999.

STINO06 Stinson, D. Cryptography: Theory and Practice. Boca Raton, FL: CRC Press,
2006.

10.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
abelian group elliptic curve Micali-Schnorr
binary curve elliptic curve arithmetic prime curve
cubic equation elliptic curve cryptography primitive root
Diffie-Hellman key exchange finite field Zero point
discrete logarithm man-in-the-middle attack

310

Briefly explain Diffie-Hellman key exchange.

What is an elliptic curve?

What is the zero point of an elliptic curve?

What is the sum of three points on an elliptic curve that lie on a straight line?

Users A and B use the Diffie-Hellman key exchange technique with a common prime
q = 71 and a primitive root &« = 7.

If user A has private key X, = 5, what is A’s public key Y,?

If user B has private key Xz = 12, what is B’s public key Y?

What is the shared secret key?
Consider a Diffie-Hellman scheme with a common prime ¢ = 11 and a primitive root
a = 2.

Show that 2 is a primitive root of 11.

If user A has public key Y, = 9, what is A’s private key X,?

If user B has public key Yz = 3, what is the secret key K shared with A?
In the Diffie-Hellman protocol, each participant selects a secret number x and sends
the other participant o* mod ¢ for some public number «. What would happen if the
participants sent each other x* for some public number « instead? Give at least one
method Alice and Bob could use to agree on a key. Can Eve break your system with-
out finding the secret numbers? Can Eve find the secret numbers?

This problem illustrates the point that the Diffie-Hellman protocol is not secure with-
out the step where you take the modulus; i.e. the “Indiscrete Log Problem” is not a
hard problem! You are Eve and have captured Alice and Bob and imprisoned them.
You overhear the following dialog.

Bob: Oh, let’s not bother with the prime in the Diffie-Hellman protocol, it
will make things easier.

Alice: Okay, but we still need a base « to raise things to. How about & = 3?
Bob: All right, then my result is 27.
Alice: And mine is 243.

What is Bob’s private key X3 and Alice’s private key X,? What is their secret com-
bined key? (Don’t forget to show your work.)
Section 10.1 describes a man-in-the-middle attack on the Diffie-Hellman key ex-
change protocol in which the adversary generates two public—private key pairs for the
attack. Could the same attack be accomplished with one pair? Explain.
Consider an Elgamal scheme with a common prime ¢ = 71 and a primitive root
a=17.
If B has public key Y3 = 3 and A choose the random integer k = 2, what is the
ciphertext of M = 30?
If A now chooses a different value of k so that the encoding of M = 30 is
C = (59, C,), what is the integer C,?
Rule (5) for doing arithmetic in elliptic curves over real numbers states that to double
a point Q,, draw the tangent line and find the other point of intersection S. Then
O + Q =20 = —S§. If the tangent line is not vertical, there will be exactly one point
of intersection. However, suppose the tangent line is vertical? In that case, what is the
value 2Q? What is the value 3Q?

311

Demonstrate that the two elliptic curves of Figure 10.4 each satisfy the conditions for
a group over the real numbers.

Is (4, 7) a point on the elliptic curve y> = x> — 5x + 5 over real numbers?

On the elliptic curve over the real numbers y*> = x* — 36x, let P = (—3.5,9.5) and
Q = (—25,8.5).Find P + Q and 2P.

Does the elliptic curve equation y> = x> + 10x + 5 define a group over Z,?

Consider the elliptic curve Eq;(1, 6); that is, the curve is defined by y* = x* + x + 6
with a modulus of p = 11. Determine all of the points in E(1, 6). Hint: Start by cal-
culating the right-hand side of the equation for all values of x.

What are the negatives of the following elliptic curve points over Z;? P = (5, 8);
Q=(3,0); R= (0, 6).

For Eq((1, 6), consider the point G = (2, 7). Compute the multiples of G from 2G
through 13G.

This problem performs elliptic curve encryption/decryption using the scheme out-
lined in Section 10.4. The cryptosystem parameters are E{;(1,6) and G = (2,7). B’s
private key is ng = 7.

Find B’s public key Pg.

A wishes to encrypt the message P,, = (10,9) and chooses the random value

k = 3.Determine the ciphertext C,,.

Show the calculation by which B recovers P,, from C,,.

The following is a first attempt at an elliptic curve signature scheme. We have a global
elliptic curve, prime p, and “generator” G. Alice picks a private signing key X, and
forms the public verifying key Y, = X,4G. To sign a message M:

Alice picks a value k.

Alice sends Bob M, k and the signature S = M — kX,G.

Bob verifies that M = S + kY.

Show that this scheme works. That is, show that the verification process produces

an equality if the signature is valid.

Show that the scheme is unacceptable by describing a simple technique for forging

a user’s signature on an arbitrary message.

Here is an improved version of the scheme given in the previous problem. As before,
we have a global elliptic curve, prime p, and “generator” G. Alice picks a private
signing key X, and forms the public verifying key Y, = X,G. To sign a message M:
Bob picks a value k.
Bob sends Alice C; = kG.
Alice sends Bob M and the signature S = M — X,C;.
Bob verifies that M = § + kY.
Show that this scheme works. That is, show that the verification process produces
an equality if the signature is valid.
Show that forging a message in this scheme is as hard as breaking (Elgamal)
elliptic curve cryptography. (Or find an easier way to forge a message?)
This scheme has an extra “pass” compared to other cryptosystems and signature
schemes we have looked at. What are some drawbacks to this?

This page intentionally left blank

PART 3: CRYPTOGRAPHIC DATA INTEGRITY
ALGORITHMS

CRYPTOGRAPHIC HASH
FUNCTIONS

11.1 Applications of Cryptographic Hash Functions

Message Authentication
Digital Signatures
Other Applications

11.2 Two Simple Hash Functions
11.3 Requirements and Security

Security Requirements for Cryptographic Hash Functions
Brute-Force Attacks
Cryptanalysis

11.4 Hash Functions Based on Cipher Block Chaining
11.5 Secure Hash Algorithm (SHA)

SHA-512 Logic
SHA-512 Round Function
Example

11.6 SHA-3

The Sponge Construction
The SHA-3 Iteration Function f

11.7 Recommended Reading

11.8 Key Terms, Review Questions, and Problems

313

314

“The fish that you have tattooed immediately above your right wrist could only
have been done in China. I have made a small study of tattoo marks and have even
contributed to the literature on the subject.”

— The Red-Heade